
深度学习系统的性能提升
陈俊洁 天津大学

演讲嘉宾

陈俊洁
国家优青，天津大学特聘研究员，博导，软件工程团队负责人

研究方向主要为基础软件测试、可信人工智能、数据驱动的软件工程等。

荣获中国科协青年托举人才、CCF优博、电子学会自然科学一等奖等奖项。

近年共发表学术论文70篇，其中CCF A类论文50余篇，获六项最佳论文

奖（包括五项CCF-A类会议ACM SIGSOFT Distinguished Paper Award，

以及一项CCF-B类会议ISSRE的Best Research Paper Award）。成果在

华为、百度等多家知名企业落地。担任CCF-A类会议ASE 2021评审过程

主席，Dagstuhl研讨会联合主席，以及软件工程领域全部CCF-A类会议

的程序委员会成员等。

目 录
CONTENTS

1. 深度学习系统的回归性能提升

2. 深度代码模型的鲁棒性能力提升

3. 深度代码模型部署后性能即时提升

深度学习系统的回归性能提升
PART 01

Regression in Deep Learning Systems

It is important to detect regression faults!

DL System Ver1.0 DL System Ver2.0 DL System Ver3.0

New Requirements Fixing/Improvement

Accuracy:40% Accuracy:60%

Existing Works Have Limitations

SOTA techniques can not be directly adapt to solve this issue.

DL System Ver1.0
Accuracy=91%

DL System Ver2.0
Accuracy=91.5%

Code
Change

Neuron
Change

Regression Fuzzing in Traditional Software

DL Systems do not have explicit logical
structures
Neuron change nearly affect all the neurons
while code change only affect limited parts

Fuzzing for Deep Learning Models

Ignore the difference between different versions of
the DL models

Overlook important properties of the testing,
such as fidelity and diversity.

Ø DeepHunter: Fuzzing guided by fine-grained neuron
coverage in a specific version

Ø DiffChaser: Detect disagreements in Quantization by
generating test cases toward decision boundary

Ø locates code changes in software evolution and
utilize them to guide the regression fuzzing

Ignores Difference:
Poor Fault-Triggering

Overlooks
Fidelity & Diversity

1 1

2 2

Our Idea of DRFuzz

Challenge 1: Fault-Triggering

Solution: Amplifying the
prediction difference between
versions through effective
mutation to trigger more faults.

Challenge 3: Diversity

Solution: Using seed
maintenance to generate test
inputs trigger different
regression faults.

Challenge 2: Fidelity

Solution: Designing GAN-
based fidelity assurance
method to ensure fidelity.

Our Approach: DRFuzz

GAN-based Fidelity Assurance

 * Guarantee fidelity of test inputs

② Seed Maintenance

 * Improve Diversity of test inputs * Generate fault-triggering test inputs

① Mutation

① Mutation

Mutation Rule Selection

② GAN-based Fidelity Assurance

GAN Scoring & Filtering

Seed

Mutated Inputs

High-Fidelity Inputs

Mutation Rules

Seed Pool

Input Mutation

GAN-Discriminator

Input
ExecutionOriginal

Model
Regression Model

Potential Test
Input Evaluation

Regression
Faults

Tree-based Trimming

Seed Probability Update

③ Seed Maintenance

Mutation
Mutation Rules: We design 16 mutation rules:
Pixel-Level Mutation & Image-Level Mutation

MCMC-guided Mutation Rule Selection : Mutation rules
that can generate test inputs with high fidelity and
amplify the prediction difference towards becoming a
regression fault, should be selected frequently.

Pixel-Level Mutation:

Image-Level Mutation:

Pixel Coloring Reverse Pixel Shuffling

Image Rotating Image Translation

������ =
#�����������������

#�����������
×

#�����������
#�����������

Regression Fault-triggering Fidelity

< ��1, ��2, ��3,……, ��� >

� ��� ��� = ��� 1, 1 − � ��−��)

1

2

GAN-based Fidelity Assurance

Using DCGAN (GAN-based approach) preserve semantics to reducing discarding
test inputs with high fidelity from image-level mutation rules.

train

Generator Discriminator
DiscriminatorSeed

Mutated Input

0.90

0.91

Training Phase: Predicting Phase:

Train Set

1 2

Seed Maintenance

Tree-based Trimming The Trimming process aims to trigger more diverse faulty
behaviors by removing redundant seed to adjust seed selection probability.

Subjects and Regression Scenarios

 Task Name Train Set Test Set Model

 Digit
 Recognition MNIST 60k 10k LeNet5

 Object
 Recognition Cifar-10 60k 10k VGG16

 Clothes
 Recognition FASHION-MNIST 60k 10k AlexNet

 Road Number
 Recognition SVHN 73,257 26,032 ResNet18

The subjects are diverse, involving different tasks/models/regression scenarios.

Supplementary
Training

Adversarial
Training

Model Fixing

Model Pruning

RQ1: Effectiveness

DRFuzz outperforms the compared approaches stably on all the regression
scenarios in terms of various metrics.

Effectiveness on Different Regression Scenarios

#RFI: Regression fault-triggering test inputs;
#RF: Dynamic diversity of test inputs;
[Seed, Faulty Behavior]
#Seed: Static Diversity of test inputs; (Seed)
#GF: general faults detected on the regression model;

RQ2: Ablation

Approach #RFI #RF #Seed #GF

DRFuzz 70,093 16,464 6,942 231,675

DRFuzz-r (No MCMC) 53,037 14,309 6,523 185,354

DRFuzz-NG (No GAN) 83,042 21,044 7,748 279,544

DRFuzz-NSM (No Seed
Maintenance)

36,936 7,109 3,239 136,723

Ablation Experiment Results

DRFuzz (left) vs DRFuzz-NG (right)

blurry noisy over-changed

The GAN-based Fidelity Assurance technique can filter out more than 20% of
fault-triggering inputs with low fidelity

RQ3: Robustness Enhancement
Finetuning Accuracy on Different Regression Scenarios

Finetuning DL models with the test inputs generated by DRFuzz can fix 77.72%∼ 87.03%
regression faults from DRFuzz and can defend 52.26%∼ 80.68% attack from DiffChaser
and 66.63%∼ 79.88% attack from DeepHunter.

深度代码模型的鲁棒性能力提升
PART 02

Deep Code Models

DL have been widely used to process source code!

Code Generation

Clone Detection

Authorship Attribution Functionality Classification

Code Completion

…

Model Robustness is Critical

Testing Enhancement

Adversarial examples are important to test & enhance model robustness!

Deep Code Model

</>

Adversarial Examples

</> </> </>...

Prediction Results

...

Testing Report

</>

Adversarial Examples

</> </> </>...

</>

Training Set

</> </> </>...

</>

Augmented Set

</> </> </>...

Adversarial
Training

1 2

The inputs (i.e., source code) for
deep code models are discrete.

1

Source code has to strictly stick to
complex grammar and semantics
constraints.

2

Conclusion: the existing adversarial
example generation techniques in
other areas are hardly applicable to
deep code model

Unique Characteristics of
Adversarial Examples for Deep
Code Models:

Deep Code Models are not
Robust

Semantic-preserving adversarial examples can alter the prediction results!

Workflow of current techniques

Designing semantic-preserving
code transformation rules.
Ø identifier renaming, etc.

Searching ingredients from the
space for transforming an original
input to a semantic-preserving
adversarial example.
Ø Model prediction changes, etc. Adversarial Example

Generated by ALERT
Adversarial Example

Generated by CARROT

void main () {
char a[101] = {‘\0’};
gets(a);
// Some code...
}

void main () {
char argc[101] = {‘\0’};
gets(argc);
while(0);
// Some code...
}

+ while(0); a ⟹ argc

Limitations

SOTA techniques still suffer from effectiveness & efficiency Issues!

Almost
Infinite

void f1(int a[], int n){
 int i; int j; int k;
 for (i = 0; i < n; i++) {
 for (j=0;j<((n-i)-1);j++){
 if (a[j] > a[j + 1]){
 k = a[j];
 a[j] = a[j + 1];
 a[j + 1] = k;
 }
 }
 }
}

1
2
3
4
5
6
7
8
9
10
11
12

Target Input

Ground-truth Label: sort
Prediction Results: sort (96.52%)

a

n

i

j

k

Identifiers

aa, array, at, area, au, am, alpha, ata, ad,
auto, argc, ac, ar, ab ...

nu, sn, nc, len, cn, m, ns, pn, nb, nn, np,
x, un, nan, fn, num, nt ...

it, chi, li, ui, ci, ia, ei, iii, oi, ini, ji, ai, phi,
bi, gi, ie, ik ...

jump, js, jit, jc, jan, jp, ji, kj, bj, oj, adj, jl,
aj, jj, je, ja ...

uk, ko, ku, kw, sk, key, ck, ak, mk, ky, tk,
ks, kin, ke, km, rank ...

Ingredients

Complexity
nmThe Ingredient Space is Enormous1

2 Greedy model prediction
changes guided search
process is likely to fall into
optimum.

3 Frequently invoking the
target model could affect
test efficiency via
adversarial example
generation.

Novel Perspective: Code-Difference-Guided Adversarial Example Generation

void f1(int a[], int n){
 int i; int j; int k;
 for (i=0; i<n; i++) {
 for (j=0; j<((n-i)-1); j++) {
 if (a[j]>a[j+1]){
 k = a[j];
 a[j] = a[j + 1];
 a[j + 1] = k;
 }
 }
 }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14

Ground-truth Label: sort
Prediction Results: sort (96.52%)

int f2(int t[], int len){
 int i; int j;
 i = 0; j = 0;
 while (len != 0) {
 t[i] = len % 10;
 len /= 10;
 i = i + 1;
 }
 while (j < i){
 if (t[j] != t[(i - j) - 1]) return 0;
 j = j + 1;
 }
 return 1;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14

Ground-truth Label: palindrome
Prediction Results: palindrome (99.98%)

void f3(int t[], int len){
 int i; int j; int k;
 i = 0;
 while (i < len) {
 j = 0;
 while (j < ((len - i) - 1)) {
 if (t[j] > t[j + 1]){
 k = t[j];
 t[j] = t[j + 1];
 t[j + 1] = k;
 } j = j + 1;
 } i = i + 1;
 }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14

Ground-truth Label: sort
Prediction Results: palindrome (90.88%)

Target Input Reference Input Adversarial Example

Have Different Semantics & Small Code Difference

Preserve the Semantics of f1 & Reduce Code Difference Brought by f2Complexity: nm → �2

Our Approach: CODA

Test

Enhance

</>

Target
Inputs

Reference
Inputs

Selection

Equivalent
Structure

Transformation

Identifier
Renaming

Transformation

</>

Adversarial
Examples

Target
Model

Training Set Augmanted Set

Overview of CODA

Structure Difference Identifier Difference

Reference Inputs Selection

</>

Target
Input

Code
Model

0.1

0.0

0.6

0.3

Softmax
Confidence

Masked Code
Similarity

Top-N
Reference Inputs

1st Class

2nd Class

Training
Data

</></></>

How to select reference inputs for reducing the ingredient space?

1 The prediction result is more likely to be changed from 1st Class to 2nd Class.

2 Smaller code difference can effectively limit the number of ingredients.

Equivalent Structure Transformation

How to reduce structure difference between target input and reference inputs?

1 applying equivalent structure transformations rule in a probabilistic way to reduce occurring
distribution difference

2 considering all common kinds of code structures (i.e., loop, branch, and sequential).

Identifier Renaming Transformation

</>

Intermediate
Input

Identifier
Similarity

Iterative
Transformation

Reference
Identifiers

</>

Adversarial
Example

How to reduce identifier difference between target input and reference inputs?

1 Identifier renaming transformation refers to replacing the identifier in the target input with the
identifier in reference inputs.

2 To ensure the naturalness, we consider the semantic similarity between identifiers and design an
iterative transformation process.

Subjects
 Task Train/Validate/Test Class Language Model Acc.

 Vulnerability
 Prediction 21,854/2,732/2,732 2 C

CodeBERT
GraphCodeBERT
CodeT5

63.76%
63.65%
63.83%

 Clone
 Detection 90,102/4,000/4,000 2 Java

CodeBERT
GraphCodeBERT
CodeT5

96.97%
97.36%
98.08%

 Authorship
 Attribution 528/–/132 66 Python

CodeBERT
GraphCodeBERT
CodeT5

90.35%
89.48%
92.30%

 Functionality
 Classification 41,581/–/10,395 104 C

CodeBERT
GraphCodeBERT
CodeT5

98.18%
98.66%
98.79%

 Defect
 Prediction 27,058/–/6,764 4 C/C++

CodeBERT
GraphCodeBERT
CodeT5

84.37%
83.98%
81.54%

The subjects are diverse, involving different tasks/models/classes/languages.

5 Tasks 3 Pre-trained
Models

2~104
Classes

4 Programming
Languages

RQ1: Effectiveness and Efficiency

CODA outperforms ALERT&CARROT in terms of the rate of revealed faults (RFR).

CODA performs less time and fewer model invocations than ALERT&CARROT.

Metric:

Rate of Revealed
Faults ↑

Model Invocations ↓
Metric:

RQ2: Model Robustness Enhancement

CODA helps enhance the model robustness more effectively than ALERT&CARROT,
in terms of reducing faults revealed by the adversarial examples.

Evaluation Set

Augmented
Training Set

Metric:
Accuracy ↑

RQ3: Contribution of Main Components

We constructed three variants of CODA:

• w/o RIS (Referrence Inputs Selection)
• w/o EST (Equivalent Structure Transformation)
• w/o CDG (Code Difference Guidance in EST)
• w/o IRT (Identifier Renaming Transformation)

All the three components make contributions to the overall effectiveness of CODA.

Metric:

Rate of Revealed Faults ↑

RQ4: Naturalness of Adversarial Examples

User Study (5-point Likert scale)

4 participates

</></></>

450 code snippets

The adversarial examples generated by CODA are natural
closely to the naturalness-aware ALERT.

深度代码模型部署后性能即时提升
PART 03

Performance Issues with Deployed Deep Code Models

Deployed Model

</>

Correct
Prediction

</>

Erroneous
Prediction

Accuracy < 100% Challenges in enhancing deployed model performance

It’s crucial to improve the performance of deployed deep code models!

Existing strategies

Designing more advanced networks for retraining models1

Incorporating more data for fine-tuning models2

1

2

Limitations

Time-consuming caused by manual labeling & heavy computations

Largely inexplicable caused by complex parameters and datasets

Many Mispredictions are Caused by Noise in Inputs
Denoising in image processing field [1]

Denoising in speech recognition field [2]

LRCnet

Noisy
Image

Denoised
Image

Noisy
Speech

Denoised
Speech

AeGAN

Reason:
complex environment,
image quatization ...

Formate:
continuous pixel values

Reason:
background noise,
difference speaker ...

Formate:
continuous signal values

Advantages of Input Denoising

Improving the model performance on-the-fly1

Retraining-free, efficiency boost2

1

2

Limitations for Denoising Code

Denoising in Continuous Space vs. Discrete Inputs

Complex syntactic & semantic constraints in Code

Enhancing explainable ability of technique for
correcting mispredictions

3

[1] Ren J, Zhang Z, et al. “Robust low-rank convolution network for image denoising.” MM 2022.
[2] Abdulatif S, Armanious K, et al. “Aegan: Time-frequency speech denoising via generative adversarial networks.” EUSIPCO 2022.

Input Denoising for Deep Code Models

(1) Noisy Code (2) Denoised Code

Challenges

This motivates the potential of on-the-fly improving
performance of (deployed) deep code models through
identifier-level input denoising.

1

2

How to identify mispredicted inputs from
the incomming code snippets?

How to localize noise (identifier-level)
resulting in misprediction from a given
code snippet?

3 How to cleanse noise to make the code
snippet be predicted correctly?

Noisy identifiers: the identifier makes the largest
contribution to the misprediction.

Overview of CodeDenoise

</>

Incoming
Code Snippet

Mispredicted Input
Identification

Noise
Localization

Noise
Cleansing

User

Deployed
Model

CodeDenoise

The usage of CodeDenoise in practice:

We treat CodeDenoise as a post-processing module and intergrate it with the
deployed code model as a system for making predictions in practice.

Mispredicted Input Identification

</>

Incoming
Code Snippet

Randomized
Smoothing

Perturbed
Code Snippets

Mispredicted
or

Not?

</></></></>

C1 - How to identify mispredicted inputs from the incoming code snippets?

1 In the field of CV, randomized smoothing is widely used to certify the classification result of a given
image by checking the results of randomly perturbed images in the neighborhood.

2 To design adapted randomized smoothing for deep code models, we should:
(1) define the perturbation strategy (2) and control the perturbation degree on input code.

Identifier
Renaming

Perturbation
Threshold

θ

Deep
Code Model

Identification
Result

Noise Localization
C2 - How to localize noise resulting in misprediction from a given code snippet?

1 The attention mechanism is widely used to analyze the contribution of each element in the code(in
particular, it is the core of the state-of-the-art Transformer architecture).

2 Insight: for mispredicted inputs, the identifiers with larger contributions to the misprediction are more
likely to be noise in the code snippet.

</>

 Misclassified
Code Snippet

Deep
Code Model

Attention
 Mechanism

Code
Heatmap

Noisy
Identifiers

identifier_1: 0.33

identifier_2: 0.20

...

identifier_k: 0.09

Noise Cleansing
C3 - How to cleanse noise to make the code snippet be predicted correctly?

1 Exiting masked identifier prediction (MIP) models aim to predict the tokens at the masked
locations, but they only consider the naturalness but not cleanliness.

2 To predict a clean identifier to replace the noisy identifier, CodeDenoise builds a masked clean
identifier prediction (MCIP) model based on clean training data.

<mask>

 Masked
Mispredicted
Code Snippet

Masked Clean
Identifier
Prediction

Denoised
Code Snippet

</><mask>

Clean Training Data

Masked
Clean

Identifie
r

Training Phase Inference Phase

Loss

Masked Clean
Identifier
Prediction

Subjects
 Task Train/Validate/Test Class Language Model Acc.

Authorship
Attribution 528/–/132 66 Python

CodeBERT
GraphCodeBERT

CodeT5

83.58%
77.27%
83.33%

Defect
Prediction 27,058/–/6,764 4 C/C++

CodeBERT
GraphCodeBERT

CodeT5

85.47%
83.90%
82.29%

Functionality
Classification

C104
41,581/–/10,395 104 C

CodeBERT
GraphCodeBERT

CodeT5

97.87%
98.61%
98.60%

Functionality
Classification

C++1000
320,000/80,000/100,000 1000 C++

CodeBERT
GraphCodeBERT

CodeT5

85.00%
81.62%

86.49%
Functionality
Classification
Python800

153,600/38,400/48,000 800 Python
CodeBERT

GraphCodeBERT
CodeT5

93.91%
97.39%
97.62%

Functionality
Classification

Java250
48,000/11,909/15,000 250 Java

CodeBERT
GraphCodeBERT

CodeT5

96.30%
97.79%
97.48%

The subjects are diverse, involving different tasks/models/classes/languages.

6 Datasets 3 Pre-trained
Models

4~1000
Classes

4 Programming
Languages

RQ1: Effectiveness and Efficiency of CodeDenoise

CodeDenoise outperforms Fine-tuning with larger correction success rate
and smaller mis-correction rate.

CodeDenoise outperforms Fine-tuning in terms of ovelall accuracy.

Metric:

Correction Success Rate ↑
Mis-Correction Rate ↓

Overall Accuracy ↑
Metric:

RQ2: Contribution of Each Main Component

Metrics CodeDenoise deepgini CodeDenoise randL CodeDenoise randC CodeDenoise MIP CodeDenoise

Correction Success Rate ↑ 16.91% 14.65% 10.84% 15.50% 21.91%

Mis-correction Rate ↓ 0.52% 0.41% 0.52% 0.34% 0.09%

#Identifier Changes ↓ 2.25 3.79 3.27 2.27 1.58

We constructed four variants of CodeDenoise:

• CodeDenoise deepgini: Randomized-smoothing-based strategy → DeepGini-based strategy
• CodeDenoise randR: Attention-based strategy → Random strategy
• CodeDenoise randC: MCIP-based strategy → Random strategy
• CodeDenoise MIP: MCIP-based strategy → MIP-based strategy

All the three components make contributions to the overall effectiveness of CodeDenoise.

RQ3: Influence of Hyper-parameters

θ 1 2 3 4 5

Correction Success Rate ↑ 21.91% 22.85% 23.95% 25.27% 26.08%
Mis-correction Rate ↓ 0.09% 0.14% 0.16% 0.20% 0.29%

Time (s) ↓ 0.48 0.63 1.03 1.43 1.70

N ×1 ×2 ×3 ×4 ×5

Correction Success Rate ↑ 21.91% 23.30% 24.66% 25.25% 25.99%
Mis-correction Rate ↓ 0.09% 0.09% 0.08% 0.08% 0.08%

Time (s) ↓ 0.48 0.71 0.87 1.13 1.63

We studied the influence of two hyper-parameters in CodeDenoise:

• θ: the threshold to limit the perturbation degree
• N: the number of perturbed code snippets

We obtained default settings by balancing effectiveness and efficiency for practical use.

THANKS

