||||||||||||||||||||||||||||||||||

Al 3K Z_Sj] Eﬂ #I: ﬁﬂ: E ;\;;tware
éﬁi#_)\ﬁ?{tﬂj‘{% Development

Digital
FESFEI 11.24-25 | summit

=T A RFREREREA

MRS RKEXF

e 4 A
HIRESEIES + ZEH> (EVINK

—1000 + $2/REZIPARIFE [H¥

G ke ﬂ 23| P S K ie i L8y
@ﬁ@i K+IEL K+ S RBEFR RS AIFES K+ S BRRER R LI ES

2ixEdiE: 2024.05.24-25 =irda: 2024.09.20-21

\/ - - s

.

@ O O O O O
NDDig2 ﬂ 23| i NDDig2 % 5| A=W NDDig2 ﬁ 31|

NDD#2

aiedia: 2023.11.24-25 awedia: 2024.07.19-20 2iwediE: 2024.11.15-16

PRiZiE
ERE, REASSEHRR, B9, K TRENGSE

A EEZAEMPGEIN. AEALTERE. SRR TIRES.
FIRFERMDEEEEAT . CCHIUE. BFEBEARE—ERERI,
IR RRFAICN 705, HFCCF ARIEN50RRE, H\ERFEEX
¥ (BIFERICCF-AZEAIYACM SIGSOFT Distinguished Paper Award,
AN —INCCF-BE£i ISSRERYBest Research Paper Award) , BERTE
). BESEZFRMZEUZM, BECCF-AZERINASE 20211FHISTE
F/E, DagstuhlISEASERE, UIRKETLEMREIPCCF-AZESIY

HREFER SRS

ARSI SRR S EHEANEZHER NDD ﬁ'*j*‘?ﬂ@’%?ﬁ“%ﬁ

(

H=x .

CONTENTS ,

FIRFRIETERERH
RBRENEZEEEREH
RBIREERE R IEREEN Y=

U
O
z >
gt
5
=2
RE
3
i
m
b

tttttttttttttttttttttttttttttttttt

PART 01 o
= F I RFRIEIEEEIEH o

» Regression in Deep Learning Systems

N\
S~
v
I'I
N\
S~
v
I'I

N\
S~
v
I'I
AI
S~
A4

N\
S~
A\
|l
N\
S~
A4
|l

DL System Ver1.0 DL System Ver2.0 DL System Ver3.0 e |

<> <>
) /> />
e O i\'\
New Requirements Fixing/Improvement @ @

Accuracy:407% Accuracy:607%

Q It is important to detect regression faults!

AR EN IR R R 2 EEN AR R Awmawu&u

Al*software,De elo@1 thtal Ummt
e X s

» Existing Works Have Limitations

® Fuzzing for Deep Learning Models

» DeepHunter: Fuzzing guided by fine-grained neuron
coverage in a specific version

» DiffChaser: Detect disagreements in Quantization by
generating test cases toward decision boundary

® Regression Fuzzing in Traditional Software

» locates code changes in software evolution and
utilize them to guide the regression fuzzing

DL Systems do not have explicit logical
structures

B Ignore the difference between different versions of
the DL models

Neuron change nearly affect all the neurons

while code change only affect limited parts Overlook important properties of the testing,

such as fidelity and diversity.

Lk @I

DL SystemVer1.o DL Syste Ver2.0 Code Neuron Ignores Diffferenc'e:) 9ver|oc3ks .
Accuracy=91% Accuracy=91.5% Change Change Poor Fault-Triggering Fidelity & Diversity
Q SOTA techniques can not be directly adapt to solve this issue.

AR EHEREETR R £ @i\ B2 AT £t NiDD ﬁ!:jﬁ%!itﬁﬂa’%f&ﬁ%%

e

» Our Idea of DRFuzz

Challenge 1: Fault-Triggering Challenge 2: Fidelity Challenge 3: Diversity

Solution: Amplifying the
prediction difference between
versions through effective
mutation to trigger more faults.

Solution: Using seed
maintenance to generate test
inputs trigger different
regression faults.

Solution: Designing GAN-
based fidelity assurance
method to ensure fidelity.

AR iR TR & £ E A\ M F R4t NiD A'***‘“”’iﬁ#“ﬁ!"-‘3--.

Al* softw D eic@1 thtal tmmit
N i

» Our Approach: DRFuzz

. | T ~‘
Mutation - ideli : i ‘8
o ? ________________________ @) GAN-based Fidelity Assurance - _E_, > o Inpu t i .
[\ i . . | Original Regression Model EXecution | Regression
& ——»i& Mutation Rule Selection 'k‘eQ | Mfdel g j Faults
p S S - —
See [High-Fidelity | ¥ 1
y Inputs
N o g @ Seed Maintenance
o 1 | ([Potential Test i
Mutation Rules i 0N Input Evaluation E
___________________________________ \ J
f---: ----------------------------- o A\ S e e ——— -
E §0 Input Mutation ;E:: GAN Scoring & Filtering E 1
i ° ¢)
| N ————————————————————— B LD PP L L e e L e e e L T 4 I, -------------------------------------- .
... Tree-based Trimming |
| s L A :
& % % o~ _ T)
< ! I]I]\[I_N Seed Probability Update !
Seed Pool Mutated Inputs GAN-Discriminator L_uvy 0 e eeoee J
"O‘ < N = 0
D Mutation @ GAN-based Fidelity Assurance ® Seed Maintenance
* Generate fault-triggering test inputs * Guarantee fidelity of test inputs * Improve Diversity of test inputs
\ A I 4 I\ _/

AlIREHER SRR & £ EH N\ 2R NiD A'***‘*fﬁ’iﬁ’ﬂ'%ﬁ

Al* software Deve#c@wnt Dlgltal summlt
(\

» Mutation

P> Mutation Rules: We design 16 mutation rules: P MCMC-guided Mutation Rule Selection : Mutation rules
Pixel-Level Mutation & Image-Level Mutation that can generate test inputs with high fidelity and
amplify the prediction difference towards becoming a

. . regression fault, should be selected frequently.
Pixel-Level Mutation:

#
— X
#
Pixel Coloring Reverse Pixel Shuffling C)
Image-Level Mutation: Regression Fault-triggering Fidelity
<L 1y 2, 3, >

Image Rotating Image Translation

AR SHEREERR & £ EE N\ B2 AT /DD A'**‘*%ﬁ?“%

(

» GAN-based Fidelity Assurance

» Using DCGAN (GAN-based approach) preserve semantics to reducing discarding
test inputs with high fidelity from image-level mutation rules.

Training Phase: Predicting Phase:
iBé' —_— — 0.90
r:g‘l train %ﬁ%
—
Discriminator C@
Train Set Generator Discriminator

|

AR TR 2 E A SR £ NiDD A'*M*ﬁﬁﬁ*“%

Mutated Input

(

» Seed Maintenance

» Tree-based Trimming The Trimming process aims to trigger more diverse faulty
behaviors by removing redundant seed to adjust seed selection probability.

AR SERER @B SR NDD A'**‘*%ﬁ“*“% '-i‘--.

(

» Subjects and Regression Scenarios

Task Name Train Set Test Set Model

Supplementary
Training

Digit

Recognition MNIST 60k 10k LeNets % I»l %
p
- — Adversarial
oblect Cifar1o 60k 10k VGG16 @ ” % dversaria
Recognition Training
p
- £

Clothes FASHION-MNIST 60k 10k AlexNet E g

Recognition

2+ B
Road Number g, 73,257 26,032 ResNet18

Recognition

Model Fixing

Model Pruning

Q The subjects are diverse, involving different tasks/models/regression scenarios.

ARG R S mENBZHE K DD A'***‘*Wiﬁ#“%~“-‘3--.

Al*software, Deve#o@wnt Dlgltal stimmit
(

» RQ1: Effectiveness

Effectiveness on Different Regression Scenarios

Regression Scenario | Approach | #RFI1 #RF #Seed #GF
DiffChaser 12489 949] 846 18,529
SUPPLY ol 3450 k0 1400 26Rs #RFI: Regression fault-triggering test inputs;
43265 13391 6272 207917
= #RF: Dynamic diversity of test inputs;
DiffChaser 7.543 514 417 15,366 [Seed Faulty Behavior]
ADV I_un_p.um_[_ . ’ ,
DRFuzz 45620 13545 6,198 252,035
D_mf: ————————— #Seed: Static Diversity of test inputs; (Seed)
iTChaser Y i L R .
FIXING DeepHunter | 3850 2362 1608 19202 #GF: general faults detected on the regression model;
I DRFuzz 76,555 19359 7.267 228.039 I
DiffChaser 56211 2,983 2.015 67636
PRUNE DeepHunter | 8.210 3752 2.152 30200
I DRFuzz 86,040 18975 7.690 185,464

O DRFuzz outperforms the compared approaches stably on all the regression
= scenarios in terms of various metrics.

Al RETFEES lE“z:r.
Al* software Deve#c@wnt Dlgltal summlt o A

AR TN R (48 &2 = EE N\ EF R K

ND

» RQ2: Ablation

Ablation Experiment Results

Approach #RFI #RF #Seed #GF
DRFuzz 70,093 16,464 6,942 231,675
DRFuzz-r (No MCMC) 53,037 14,309 6,523 185,354
DRFuzz-NG (No GAN) 83,042 21,044 7,748 279,544
DRFuzz-NSM (No Seed 36,936 7,109 3,239 136,723
Maintenance)

LN ST A

blurry noisy over-changed

DRFuzz (left) vs DRFuzz-NG (right)

Q The GAN-based Fidelity Assurance technique can filter out more than 20% of
= fault-triggering inputs with low fidelity

ARG R S mENBZHE K DD A'***‘*ﬁﬁ’iw“%%!"-‘3--.

Al* softw D eic@1 thtal tmmit
(

» RQ3: Robustness Enhancement

Finetuning Accuracy on Different Regression Scenarios

Scenario | Train\Test | DiffChaser | DeepHunter | DRFuzz | Fdcct B}
DiffChaser 67.11% 49.62% 53.35% -0.97%
SUPPLY DeepHupter | 61.97% 12.B3% 60, 13% -0 06%
DRFuzz 73.25% 74.09% 84.98% | 0.34% |
DiffChaser 72.96% 60.39% 58.84% 0.39%
ADV:CW _|_DeepHunter | 71 849 153.25% 641 m_ﬂ_ﬁﬁ_%_l
DRFuzz 80.68 % 79.88 % 87.03% | 0.81%
DiffChaser 77.47 % 50.39% 55.70% -0.25%
ADV:BIM ___DeepHunter | 64 13% 68.43% 38.50%
DRFuzz 76.87% 67.64% 83.23% | -0.04%
DiffChaser 64.25% 50.70% 48.52% -2.30%
FIXING DeepHunter | 55.13% 63.02% 53 Q0% -1 38%
DRFuzz 52.26% 66.63% 77.72% | -0.12% |
DiffChaser 75.61% 55.55% 53.46% 3.66%
PRUNE DeepHunter | 63.84% 76.10% 59.74% 3.95%
DRFuzz 74.35% 70.37% 81.53% | 4.04%

Finetuning DL models with the test inputs generated by DRFuzz can fix 77.72%~ 87.03%
regression faults from DRFuzz and can defend 52.26%~ 80.68% attack from DiffChaser
and 66.63%~ 79.88% attack from DeepHunter.

AI g[Kj] 5&#“&“% E)\ ﬁ%'f‘t Hj 1t Al* EJK‘I'-‘FEH&’Z&? lE“z:.

Al* software Deve#o@wnt Dlgltal summlt . “
(

ND

U
O
z >
gt
5
=2
RE
g
i
i
b

tttttttttttttttttttttttttttttttttt

PART 02

RERDEROSSEEOER

» Deep Code Models

[Functionality Classification :;

[Authorship Attribution } @ B
\ P

& Ho5
- Code Completion @

Clone Detection }

)
W
i,

[@ Code Generation J

Q DL have been widely used to process source code!

NDD 2 Bfisanzes

AR SN AR iR & 2 T H N S F RS X

» Model Robustness is Critical

frrel

| Adversarial Examples |

. 2

4 3
@ Deep Code Model
. J

{eag---e}

Prediction Results

¥

Testing Report J

Testing

| Adversarial Examples

T IrEl

J

Training Set

' Ir'TED

| Augmented Set

T TE D)

J

. 2

LN Adversarial
{D} Training

|

Enhancement

@ Unique Characteristics of
Adversarial Examples for Deep
Code Models:

i Theinputs (i.e., source code) for
deep code models are discrete.

BB Source code has to strictly stick to
complex grammar and semantics
constraints.

Conclusion: the existing adversarial
example generation techniques in
other areas are hardly applicable to
deep code model

Q Adversarial examples are important to test & enhance model robustness!

AR TN R (48 &2 = EE N\ EF R K

MDD A sgmanzss

Deep Code Models are not

»> Robust

static int buffer_empty(Buffer xbuffer)
{

b

(a) An original code snippet that can be correctly
classified by a model fine-tuned on CodeBERT.

Workflow of current techniques

void main () {
char a[101] = {\0'}; Correct o
gets(a); D Classification return buffer->offset == 0;

// Some code... @

}

@ Designing semantic-preserving
code transformation rules.
> identifier renaming, etc.

+ while(0); {B a =argc

WEIE) MEND ()] static int buffer_empty(Buffer kqueue)

char argc[101] = {\0O'}; Classification {
gets(argce); Model return queue->offset == 0;
while(0); }
® Searching ingredients from the [/ some code. [bt .
} Classification (c) ALERT generates an adversarial example by

space for transforming an original
input to a semantic-preserving
adversarial example.

» Model prediction changes, etc.

replacing the variable buffer to queue.

Adversarial Example
Generated by ALERT

Adversarial Example
Generated by CARROT

Q Semantic-preserving adversarial examples can alter the prediction results!

AR F SRR & £ E N\ BT NiDD ArgfiseszEs

&

» Limitations

The Ingredient Space is Enormous

void f1(int a[], int n){
nt i; int J; int k;
for (i = O; 1 < n; i++) {
for (j=03j<((n-1)-2);j++)}
if (alj] > alj + 11){
k = aljl;
af[j] = a[j + 11;
alj + 1] = k;
}
}
}
}

=
LW ~NOOUGLA,WNLE

[
N

Ground-truth Label: sort
Prediction Results: sort (96.52%)

Target Input

Infinite

Complexity

aa, arvay, at, area, au, am, alpha, ata, ad,

auto, argc, ac, ar, ab ...

nu, sn, nc, len, cn, m, ns, pn, nb, nn, np,
X, un, nan, fn, num, nt ...

it, chi, Ii, ui, ¢i, ia, ei, iii, oi, ini, ji, ai, phi,
bi, gi, ie, ik ...

J’ Jump, js, jit, JC jan, jp, ji, kj, bj, oj, adj, jl,
aj, [j, je, ja .
k uk, ko, ku, kw, sk, key, ck, ak, mk, ky, tk,
ks, kin, ke, km, rank ...
Identifiers Ingredients

Greedy model prediction
changes guided search
process is likely to fall into
optimum.

Frequently invoking the
target model could affect
test efficiency via
adversarial example
generation.

Q SOTA techniques still suffer from effectiveness & efficiency Issues!

AR TN IR iR &R =

AN FRTA

MDD A sgmanzss

» Novel Perspective: Code-Difference-Guided Adversarial Example Generation

O©CoO~NOOOUGPRWNDNE

&

Target Input

void f1(int a[], int n){
int i; int j; int k;
for (i=0; i<n; i++) {
for (j=0; j<((n-)-1); j++) {
i (aliT>alj+ 1)
k = a[jI;
aljl = a[j + 11;
alj + 1] = k;
¥
¥
¥
¥

Ground-truth Label: sort
Prediction Results: sovt (96.52%)

-

O©CoO~NOOOUGPAWNE

R R R R R
AWNRO

<

Reference Input

int {"2(int t[], int len){
nt i; mtJ
i=0;j=
while (len = 0) {
tli] = len % 10;
len /= 10;

(=i+1;

}

while (j < i{
if (t[] = t(
j=j+1;

}

return 1;

}

-j) - 1]) return O;

Ground-truth Label: palindrome
Prediction Results: palindrome (99.98%)

-

Have Different Semantics & Small Code Difference

-

OO ~NOOOUGPRWNDNE

B R R PR
AwWNRO

X,

Adversarial Example

void f3(int t[], int len){
int i; int j; int k;
[= O;
while (i < len) {
=0
while (j < ((len - 1) - 1)) {
if (0] > t[j + 1]){
k = t[jI;
thyl = t[j + 11;
tj+ 1] = k;
}j=j+1;
Ti=i+1;
3
3

Ground-truth Label: sort
Prediction Results: palindrome (90.88%)

1

Preserve the Semantics of f1 & Reduce Code Difference Brought by f2

AR TN IR iR &R =

AN FRTA

/NDD ﬁ!ﬁi&!ﬁfﬁﬂé’?ﬁi “5“

(

» Our Approach: CODA

[= Training Set] :{> [— Augmanted Set

@ ’ Enhance

—

\) kn= _) k-J) I:>

Test
Reference Equivalent Identifier \. J N Y
Inputs Structure Renaming Adversarial Target
Selection | Transformation LTransformationJ Examples Model
Structure Difference +—— —> Identifier Difference
Overview of CODA

ARSI SRR S EHEANEZHER NDD ﬁ'*ﬁ?‘?%ﬁ‘i“%ﬁ

e

» Reference Inputs Selection

» How to select reference inputs for reducing the ingredient space?

The prediction result is more likely to be changed from 1st Class to 2nd Class.

Smaller code difference can effectively limit the number of ingredients.

———

I/ \\

! 0.1 :

: 0.6 | 1st Class I — :

| nmn

! 0.3 | 2nd Class o= :

I |
|

| Softmax Training Masked Code Top-N |

|

| Confidence Data Similarity Reference Inputs !
I

-

AR EREERR R 2 E A BF AL NiD ﬁ‘t&{{?@*ﬁ&i“ﬁ%

<

» Equivalent Structure Transformation

» How to reduce structure difference between target input and reference inputs?

applying equivalent structure transformations rule in a probabilistic way to reduce occurring

distribution difference

considering all common kinds of code structures (i.e., loop, branch, and sequential).

Transformation Description Example Before Transformation Example After Transformation
Ti-loop equivalent transformation among for structure for (i=0; i<9; i++) { i=@; while (i<9) {
and while structure Body; } Body; i++; }
Ro-b b equivalent transformation between if-else(-if) if (A) { BodyA; } if (A) { BodyA; }
e structure and if-if structure else if (B) { BodyB; } if (!A & B) { BodyB; }

equivalent numerical calculation transformation, e.g.,

R3-calculation :
++3 __3 +=3 _=3 *=3 /=3 %=? <<=3 >>:3 &=3‘ |= El =

1+=1;

i=73+ 7

equivalent transformation between a constant and

R4-constant : :
" a variable assigned by the same constant

println("Hello, World!");

String i = "Hello, World!”;
println(i);

AR TN R (48 &2 = EE N\ EF R K

Al* EJ&#EH&"#I#ER

Al*software, Deve#o@wnt Dwgltal stImmlt
- s

» Identifier Renaming Transformation
» How to reduce identifier difference between target input and reference inputs?

|dentifier renaming transformation refers to replacing the identifier in the target input with the
identifier in reference inputs.

To ensure the naturalness, we consider the semantic similarity between identifiers and design an
iterative transformation process.

———

-+:i:>=>@=>-

Intermediate Reference Identifier Iterative Adversarial
Input Identifiers Similarity Transformation Example

— o mm mm o Em o mm o Em o Em o Em oy,
o o e o e e o e e

-~

ARSI SRR S EHEANEZHER NDD ﬁ'*j*‘?ﬂ@’%?ﬁ“%ﬁ

(

» Subjects

Task Train/Validate/Test Class Language Model Acc. e g : /,
E I
- CodeBERT 63.76%
I
Vulngra@hty 21,854/2,732/2,732 2 C GraphCodeBERT 63.65% <> I N\
Prediction s —— '
CodeTs 63.83% SH—H=|
Clone CodeBERT 96.97% — |
. 90,102/4,000/4,000 2 Java GraphCodeBERT 97.36% I i
Detection CodeTs 98.08% 5 Tasks L3 Pre-trained
Authorship CodeBERT 9035+ _ _ _ . :_ _- iVI_O(_:Ie_IS_ - -
Attribution 528/-/132 66 Python GraphCodeBERT 89.48%

S
Functionality CodeBERT 98.18%

I
I
I
I
e 41,581/-/10,395 104 C GraphCodeBERT 98.66% : P
Classification CodeTs 98.79% | ‘f_(:)
I
I
I
I

Defect CodeBERT 84.37% -
Prediction 27,058/-/6,764 4 C/C++ GraphCodeBERT 83.98% 2~104 4 Programming
CodeTs 81.54% Classes Languages

Q The subjects are diverse, involving different tasks/models/classes/languages.

AlIREHER TR & £ B H A\ B2 R NiD A'*{{*%ﬁ?“@%

<

» RQ1: Effectiveness and Efficiency

Task CodeBERT GraphCodeBERT CodeT5
I] . CARROT ALERT CODA CARROT ALERT CODA CARROT ALERT CODA
u_u Metrlc' Vulnerability Prediction 33.72% 53.62% 89.58 % 37.40% 76.95% 94.72% 84.32% 82.69% 98.87 %
Clone Detection 20.78% 27.79% 44.65% 3.50% 7.96% 27.37% 12.89% 14.29% 42.07 %
Rate of Revealed Authorship Attribution 44.44% 35.78% 79.05% 31.68% 61.47% 92.00% 20.56% 66.41% 97.17%
Functionality Classification 44.15% 10.04% 56.74 % 42.76% 11.22% 57.44% 38.26% 35.37% 78.07 %
Faults T Defect Prediction 71.59% 65.15% 95.18% 79.08% 75.87% 96.58% 38.26% 35.37% 78.07%
Average 42.94% 38.48% 73.04 % 38.88% 46.69% 73.62% 3391% 40.99% 70.96 %

@ CODA outperforms ALERT&CARROT in terms of the rate of revealed faults (RFR).

ZA ALERT 21 CODA

ALERT EZJ CODA =S CARROT

E= CARROT E= CARROT
1.0
0.8
H L]

I]|]|:| Metric: 06
0.4
Model Invocations |

“ Vulnerability Clonc Authorship Funlmnality Defect b Vlnerabllity “Clone Authorship Functlonaity Defect o Vlnerabiity Clone Authorshlp Funcnonallty Defcct

Detection Detection Attribution Classification Prediction Detection Detection Attribution Classification Prediction Detection Detection Attribution Classification Prediction

(a) Model invocations on testing CodeBERT (b) Model invocations on testing GraphCodeBERT (c) Model invocations on testing CodeT5

Q CODA performs less time and fewer model invocations than ALERT&CARROT.

(

.

AR TR 2 E A SR £ NiDD A'*f*ﬁﬁﬁ*ﬁw

» RQ2: Model Robustness Enhancement

Evaluation Set

| Ori | CARROT | ALERT | CODA

[CARROT "ALERT CODA [CARROT ALERT CODA | CARROT ALERT CODA | CARROT ALERT CODA

Vulnerabiliy . COeBERT | 62.96% 62.77% 63.03% | 29.14% 21.11% 29.69% | 2343% 2627% 3444% | 32.16% 31.73% 3882%
Y GraphCodeBERT | 62.99% 62.88% 62.92% | 12.37% 19.59% 21.65% | 16.33% 17.35% 23.71% | 25.77% 24.74% 34.02%

Prediction

Task Model

CodeT5 63.69% 63.81% 63.92% | 52.03% 39.76% 82.03% | 42.26% 49.11% 44.26% | 41.43% 45.52% 52.54%
- CodeBERT 07.39% 96.45% 97.45% | 83.15% 4231% 94.44% | 52.65% 712.46% 75.32% | 38.51% 71.45% 89.78% Augmented
Deteutior GraphCodeBERT | 97.01% 97.2% 97.43% | 75.00% 66.67% 71.50% | 79.17% 84.29% 9231% | 3571% 57.69% 92.97% Training Set
CodeT5 97.73% 97.14% 98.10% | 67.77% 57.63% 75.85% | 69.94% 64.36% 81.63% | 42.15% 51.74% 79.88% raining >e

Autliorship CodeBERT 90.55% 89.39% 90.91% | 45.06% 40.67% 41.03% | 51.25% 56.25% 58.82% | 45.67% 43.33% 76.47%
Attribution GraphCodeBERT | 89.39% 88.72% 90.35% | 81.75% 67.08% 72.40% | 79.41% 78.67% 100.00% | 45.59% 80.39% 84.75%
CodeT5 92.43% 92.68% 93.03% | 7095% 6591% 73.48% | 55.73% 71.88% 76.44% | 44.31% 52.56% 72.37%

FuneHamility CodeBERT 98.11% 98.52% 98.56% | 83.46% 72.80% 81.51% | 70.83% 71.75% 79.41% | 78.92% 71.18% 95.43%
GraphCodeBERT | 98.48% 98.55% 98.72% | 67.53% 75.19% 77.27% | 32.04% 52.62% 62.98% | 91.22% 90.81% 93.08%

Classification. ™ " cogeTs | 97.92% 98.46% 98.63% | 2531% 21.33% 21.36% | 41.07% 57.14% 5742% | 24.87% 59.58% 63.76% | .
— CodeBERT | 83.50% 84.16% 84.44% | 52.73% 25.81% 66.03% | 74.8%% 7587% 83.12% | 1686% 6866% 8536% OUD Metric:
DSl GraphCodeBERT | 8334% 84.00% 84.53% | 68.20% 48.54% 74.88% | 5273% 6391% S945% | 67.08% 68.66% 76.14%
CodeTS | 8092% 81.32% 81.57% | 3148% 34.08% 37.73% | 31.75% 42.22% 55.77% | 5445% 54.18% 73.83% Accuracy 1
Average | 8643% 86.40% 86.91% | 5640% 46.57% 62.19% | 51.56% 5894% 65.67% | 49.65% 58.15% 73.95%
Q CODA helps enhance the model robustness more effectively than ALERT&CARROT,

in terms of reducing faults revealed by the adversarial examples.

AR SHEREERR & £ EE N\ B2 AT NDD A'**‘*%ﬁ*“%

T <

» RQ3: Contribution of Main Components

ﬁ We constructed three variants of CODA: [l"[l Metric:

» w/o RIS (Referrence Inputs Selection)

e w/o EST (Equivalent Structure Transformation)
e w/o CDG (Code Difference Guidance in EST)

e w/o IRT (Identifier Renaming Transformation)

Rate of Revealed Faults 1

Model w/o RIS w/o EST w/o CDG w/o IRT CODA

CodeBERT 30.83% 62.73% 63.08% 35.14% 73.04%
GraphCodeBERT 29.49% 6241% 61.98% 26.24% 73.62%
CodeT5 26.75% 50.74% 57.98% 38.21% 70.96%

@ All the three components make contributions to the overall effectiveness of CODA.

AR iR TR & £ E A\ M F R4t NiD A'***‘“”’iﬁ#“%~“-‘3--.

Al*softw D eJ thtal ummit
’ e

» RQ4: Naturalness of Adversarial Examples

|]"[| User Study (5-point Likert scale)

EXN CARROT e ALERT CODA

I

>
< 1.0

4 participates 450 code snippets

Participant A Partilpht B Partlclpant C Partlpnt D

The adversarial examples generated by CODA are natural
£ closely to the naturalness-aware ALERT.

AR SR (LR & 2 T8 A\ 2R VDD ﬁ':ff*f?%?wﬁ,*:--.

N DD Al iR EHFIES
Al* software Development D igital summ it

PART 03 7
RERDERBEEEEMEER

» Performance Issues with Deployed Deep Code Models

Bl Existing strategies

@ Designing more advanced networks for retraining models

@) Incorporating more data for fine-tuning models

B Limitations

(1) Time-consuming caused by manual labeling & heavy computations

Correct Erroneous
Prediction Prediction

@ Largely inexplicable caused by complex parameters and datasets

| S ————

:A" Accuracy < 100% 'A" Challenges in enhancing deployed model performance

Q It’s crucial to improve the performance of deployed deep code models!

AR R & 2 mH A BF UK "NDD ﬁ"ﬂﬁ*‘??’i?ﬁ "ﬁﬁ

(

» Many Mispredictions are Caused by Noise in Inputs

® Denoising in image processing field

B Advantages of Input Denoising

Reason: ([Famre |
complex environment, Denoising
image quatization ... e @ Improving the model performance on-the-fly
. LRCnet
Formate: @ Retraining-free, efficiency boost
continuous pixel values . .
Noisy Denoised
Image Image © Enhancing explainable ability of technique for

correcting mispredictions
® Denoising in speech recognition field

Bl Limitations for Denoising Code

Reason: -

background noise, !Wi

difference speaker ... Bo-§ € Denoising in Continuous Space vs. Discrete Inputs

Formate: AeGAN

LI _ANEEL-0)\-1) ° o o .

continuous signal values Noisy — Denolsed € Complex syntactic & semantic constraints in Code
Speech Speech

[1] Ren J, Zhang Z, et al. “Robust low-rank convolution network for image denoising.” MM 2022.
[2] Abdulatif S, Armanious K, et al. “Aegan: Time-frequency speech denoising via generative adversarial networks.” EUSIPCO 2022.

AIRFNRERE S EH AN BF AR A'**‘*%W“En

(

» Input Denoising for Deep Code Models

def sort (x_list, y_length):

1

2| @l selection = 0

3 flag = True

41 while flag:

D flag = False

6 for i in range(1, y_length):

7 j = y_length - 1

8 iF % List[§] <= x List[j-1l=
9 x Listlil, x Listlj=1] = %
0

x_list[j-11, x_list[j]
flag = True
al_selection += 1
return x_list, al_selection

W N =

def sort (x_list, y_length):
count = 0
flag = True
while flag:
flag = False
for i in range(1, y_length):
j = y_length - 1
if x_list[j] < x_list[j-11:
x List[§]; ® List[j-1] = %
x_list[j-1], x_list[j]
flag = True
count += 1
return x_1list, count

Ground-truth Label: Bubble Sort

Noisy Identifier: al_selection e

Ground-truth Label: Bubble Sort
Prediction Result: Bubble Sort

Denoised Identifier: count

Prediction Result: Selection Sort
(1) Noisy Code

(2) Denoised Code

B Challenges

the incomming code snippets?

¥

€ How to localize noise (identifier-level)
resulting in misprediction from a given

code snippet?

$

© How to identify mispredicted inputs from

[} Noisy identifiers: the identifier makes the largest
contribution to the misprediction. 9 How to cleanse noise to make the code
o, snippet be predicted correctly?
-~ This motivates the potential of on-the-fly improving
performance of (deployed) deep code models through

identifier-level input denoising.

AR TN IR iR &R =

1\

Al RETFEES lE“z:r.
Al* software Deve#c@wnt Dlgltal summlt o A

ND

AN FRTA

» Overview of CodeDenoise

':{> Deployed
Mispredicted Input Noise Noise Model
Identification Localization Cleansing g P

_ _/

Incoming
Code Snippet CodeDenoise

@ The usage of CodeDenoise in practice:

® We treat CodeDenoise as a post-processing module and intergrate it with the
deployed code model as a system for making predictions in practice.

ARSI SRR S EHEANEZHER NDD ﬁ'*ﬁ?‘?%ﬁ‘i“%ﬁ

e

» Mispredicted Input Identification

» C1-How to identify mispredicted inputs from the incoming code snippets?

In the field of CV, randomized smoothing is widely used to certify the classification result of a given
image by checking the results of randomly perturbed images in the neighborhood.

To design adapted randomized smoothing for deep code models, we should:
(1) define the perturbation strategy (2) and control the perturbation degree on input code.

———

/’ "\
I |
I B " I
| , 6] —— !
| -y AN = Mispredicted !
: =>| @ +(+ = —> > e |
| Not? !
|
: _ = _ :
|
. Incoming Randomized Identifier Perturbation Perturbed Deep Identification
| Code Snippet Smoothing Renaming Threshold Code Snippets = Code Model Result !
I]

-

ARSI SRR S EHEANEZHER NDD ﬁ'*ﬁ‘?%ﬁ‘i“?ﬁ

e

» Noise Localization

» C2-How to localize noise resulting in misprediction from a given code snippet?

The attention mechanism is widely used to analyze the contribution of each element in the code(in
particular, it is the core of the state-of-the-art Transformer architecture).

Insight: for mispredicted inputs, the identifiers with larger contributions to the misprediction are more
likely to be noise in the code snippet.

——

I
: :
: identifier_1: 0.33 I 1
! identifier_2: 0.20 :
! :{> :{> ::> :
| & i
0.0 !
i |
! Misclassified Deep Attention Code Noisy !
| Code Snippet Code Model Mechanism Heatmap Identifiers !
| !

-

AR SHER (R & 2 T 3\ B AT NDD A'*M*%ﬁ?“%n

(

» Noise Cleansing

» C3-How to cleanse noise to make the code snippet be predicted correctly?

Exiting masked identifier prediction (MIP) models aim to predict the tokens at the masked
locations, but they only consider the naturalness but not cleanliness.

To predict a clean identifier to replace the noisy identifier, CodeDenoise builds a masked clean
identifier prediction (MCIP) model based on clean training data.

__

K N \
| - I | 1
: Masked IL “ Lo :
: Clean I::> N 0 :
! Identifie Loss R |
| 1 | |
| [| r J (| :
|

| I Masked Clean | | Masked Masked Clean Denoised |
| |

| Clean Training Data Identifier ! | Mispredicted Identifier Code Snippet !
| Prediction ' 1 Code Snippet Prediction !
N ! ' !

Training Phase Inference Phase

ARSI SRR S EHEANEZHER NDD ﬁ'*ﬁ?‘?%ﬁ‘i“%ﬁ

e

» Subjects

Task Train/Validate/Test Class Language Model Acc. I .
T (
. CodeBERT 83.58% ,
ﬁfcj’f:t?:igﬁ 528/-/132 66 Python GraphCodeBERT 77.27% I
CodeTs 83.33% | »
Defect CodeBERT 85.47% :
Prediction 27,058/-/6,764 4 C/C++ GraphCodeBERT 83.90% I
CodeTs ~ 8229% 6 Datasets ! 3 Pre-trained
Functcigna!ity CodeBERT 97.87% : Models
Classification 41,581/-/10,395 104 C GraphCodeBERT 98.61% _ b e e e e
C104 CodeTs 98.60% |
Functionality CodeBERT 85.00% O . : e @
Classification 320,000/80,000/100,000 1000 C++ GraphCodeBERT 81.62% |
C++1000 CodeTs 86.49% O O | ﬁ ((
Functionality CodeBERT 93.91% ' =
Classification 153,600/38,400/48,000 800 Python GraphCodeBERT 97.39% : .
Python800 CodeTs 97.62% 4~1000 ;4 Programming
Functionality CodeBERT 96.30% Classes I Languages
Classification 48,000/11,909/15,000 250 Java GraphCodeBERT 97.79%
Java2s50 CodeTs 97.48%

Q The subjects are diverse, involving different tasks/models/classes/languages.

Al KA TS n&e&
Al* software Deve#c@wnt Dlgltal summlt -

AR TN R (48 &2 = EE N\ EF R K

ND

» RQ1: Effectiveness and Efficiency of CodeDenoise

Task CodeBERT GraphCodeBERT CodeT5
I] Metri Fine-tuning CodeDenoise Fine-tuning CodeDenoise Fine-tuning CodeDenoise
M etric: Authorship Attribution 20.00%/1.79% 30.00%/0.00% 10.00%/0.00% 20.00%/0.00 % 10.00%/1.79% 40.00%/0.00%
. Defect Prediction 5.98%/0.59% 22.47%/0.24% 851%/1.44% 28.73%/0.18 % 5.15%/0.29% 16.64%/0.18%
Correction Success Rate | Functionality Classification C104 7.32%/0.08% 17.07%/0.02% 5.88%/0.06% 14.12%/0.04% 13.41%/0.06% 15.85%/0.04%
Mis-C ti Rat Functionality Classification C++1000 1.42%/017% 27.32%/0.05% 1.95%/0.34% 5.14%7/0.05 % 1.14%/0.15% 14.13%/0.04%
is-Correction Rate | Functionality Classification Python800 4.19%/0.09% 28.76%/0.03% 7.18%/0.08% 20.48%/0.05% 3.35%/0.06% 19.55%/0.02%
Functionality Classification Java250 23.00%/0.07% 31.71%/0.04% 16.67%/0.26% 23.21%/0.25% 26.83%/0.03% 27.80%/0.03%
Average 10.32%/0.46% 26.22%/0.06% 8.37%/0.36% 18.61%/0.09 % 9.98%/0.39% 22.33%/0.05%
Q CodeDenoise outperforms Fine-tuning with larger correction success rate
and smaller mis-correction rate.
Task CodeBERT GraphCodeBERT CodeT5
Ori Fine-tuning CodeDenoise Ori Fine-tuning CodeDenoise Ori Fine-tuning CodeDenoise

ul] Metric: Authorship Attribution 84.85% 86.36% 89.39% 84.85% 86.36% 87.88% 84.85% 84.85% 90.91%

|] * Defect Prediction 85.66% 86.01% 88.68 % 84.36% 84.48% 88.70% 82.76% 83.41% 85.48%
Functionality Classification C104 97.63% 97.73% 98.02 % 98.36% 98.40% 98.56% 98.42% 98.58% 98.63%

Overall Accuracy 1 Functionality Classification C++1000 84.93% 85.00% 89.00% 81.68% 81.77% 82.59% 86.50% 86.52% 88.37%
Functionality Classification Python800 97.12% 97.15% 97.92 % 98.43% 98.46% 98.71% 97.76% 97.78% 98.18%

Functionality Classification Java250 96.17% 96.99% 97.35% 97.76% 97.88% 98.04% 9727% 97.97% 98.00%

Average 91.06% 91.54% 93.39% 90.91% 91.23% 92.42% 91.26% 91.52% 93.26%

Q CodeDenoise outperforms Fine-tuning in terms of ovelall accuracy.

ND

Al* EA#TJH&#I#E%

Al* software Deve#c@wnt Dlgltal summlt
(\

AR TN R (48 &2 = EE N\ EF R K

» RQ2: Contribution of Each Main Component

|]|]|] We constructed four variants of CodeDenoise:

* CodeDenoise geepgini: Randomized-smoothing-based strategy — DeepGini-based strategy
e CodeDenoise gngr: Attention-based strategy — Random strategy

e CodeDenoise ygngc: MCIP-based strategy — Random strategy

e CodeDenoise yp: MCIP-based strategy — MIP-based strategy

Metrics CodeDenoise geepgini CodeDenoise (4nq. CodeDenoise (4nqc CodeDenoise ;p CodeDenoise
Correction Success Rate | 16.91% 14.65% 10.84% 15.50% 21.91%
Mis-correction Rate | 0.52% 0.41% 0.52% 0.34% 0.09%
#ldentifier Changes | 2.25 3.79 3.27 2.27 1.58

Q All the three components make contributions to the overall effectiveness of CodeDenoise.

AR EHEREETR R £ @i\ B2 AT £t NiDD ﬁ!:jﬂitﬁf@’%f&iﬁ%

e

» RQ3: Influence of Hyper-parameters

|]|]|] We studied the influence of two hyper-parameters in CodeDenoise:

e O: the threshold to limit the perturbation degree
e N: the number of perturbed code snippets

0 1 2 3 4 5
Correction Success Rate 1 21.91% 22.85% 23.95% 25.27% 26.08%
Mis-correction Rate | 0.09% 0.14% 0.16% 0.20% 0.29%
Time (s) | 0.48 0.63 1.03 1.43 1.70
N X1 X2 x3 X4 X5
Correction Success Rate | 21.91% 23.30% 24.66% 25.25% 25.99%
Mis-correction Rate | 0.09% 0.09% 0.08% 0.08% 0.08%
Time (s) | 0.48 0.71 0.87 1.13 1.63

Q We obtained default settings by balancing effectiveness and efficiency for practical use.

ARG R S mENBZHE K DD A'***‘*ﬁﬁ’iw“%%!"-‘3--.

Al*software, Deve#c@wnt Dlgltal stimmit
(

AV BB Il daniitha.

THANKS

