

第8届 Al+ Development Digital Summit

Al+研发数字峰会

拥抱AI重塑研发

11月14-15日 | 深圳

EDEAI+ PRODUCT INNOVATION SUMMIT 01.16-17 · ShangHai AI+产品创新峰会

Track 1: AI 产品战略与创新设计

从0到1的AI原生产品构建

论坛1: AI时代的用户洞家与需求发现 论坛2: AI原生产品战路与商业模式重构

论坛3: AgenticAl产品创新与交互设计

2-hour Speech: 回归本质

用户洞察的第一性

--2小时思维与方法论工作坊

在数字爆炸、AI迅速发展的时代, 仍然考验"看见"的"同理心"

Track 2: AI 产品开发与工程实践

从1到10的工程化落地实践

论坛1: 面向Agent智能体的产品开发 论坛2: 具身智能与AI硬件产品

论坛3: AI产品出海与本地化开发

Panel 1: 出海前瞻

"出海避坑地图"圆桌对话

--不止于翻译: AI时代的出海新范式

Track 3: AI 产品运营与智能演化

从10到100的AI产品运营

论坛1: AI赋能产品运营与增长黑客 论坛2: AI产品的数据飞轮与智能演化

论坛3: 行业爆款AI产品案例拆解

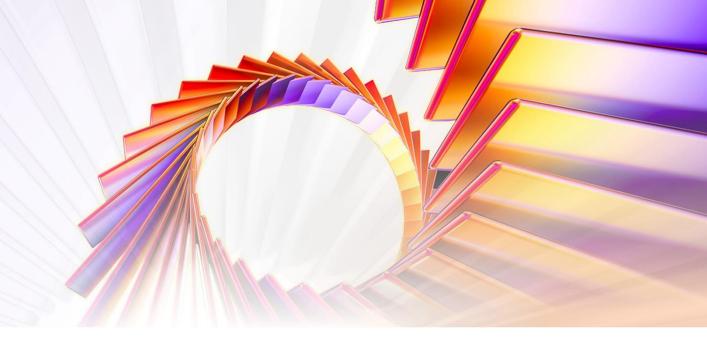
Panel 2: 失败复盘

为什么很多AI产品"叫好不叫座"?

--从伪需求到真价值: AI产品商业化落地的关键挑战

智能重构产品数据驱动增长

Reinventing Products with Intelligence, Driven by Data



知识图谱基座模型及技术演进

胡伟 | 南京大学

胡伟

南京大学 教授、博士生导师

研究兴趣为知识图谱、数据库、智能软件。先后于阿姆斯特丹自由大学、斯坦福大学、多伦多大学访学。主持多项国家自然科学基金项目,在高水平会议和期刊上(例如,SIGMOD、VLDB、ICDE、ICML、NeurIPS、AAAI、IJCAI、KDD、WWW、SIGIR、ICSE、ASE、ACL、EMNLP、NAACL、TKDE、VLDBJ、TSE、TNNLS)发表100余篇论文,Google Scholar引用7千余次,获得过ASE、ISWC、JIST、CCKS、CHIP最佳/杰出论文奖或提名、华为公司难题揭榜"火花奖"、阿里巴巴达摩院优秀学术合作项目奖等。担任数据库专委会委员、语言与知识计算专委会委员、万维网联盟W3C南京大学学术代表等。

E I

- I. 背景:知识图谱与基座模型
- II. 问题:知识图谱面临的挑战
- III. 解决:可迁移的知识表示
- IV. 实现: 从持续学习到基座模型
- V. 总结: 基座模型与知识智能体

PART 1

背景:知识图谱与基座模型

知识图谱

以结构化的方式组织、描述和理解客观世界中的概念、实体及其之间的关系与属性,是结构 化的语义知识库

元素

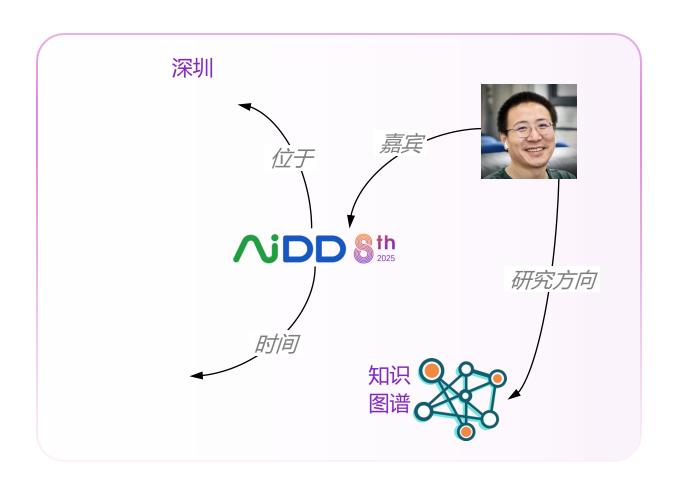
点:实体或者概念,有名称、描述等属性信息

边:有向,带标签,表示关系

事实

表示: <主,谓,宾>

示例: < 第 8 届 AiDD 大会,位于,深圳 >



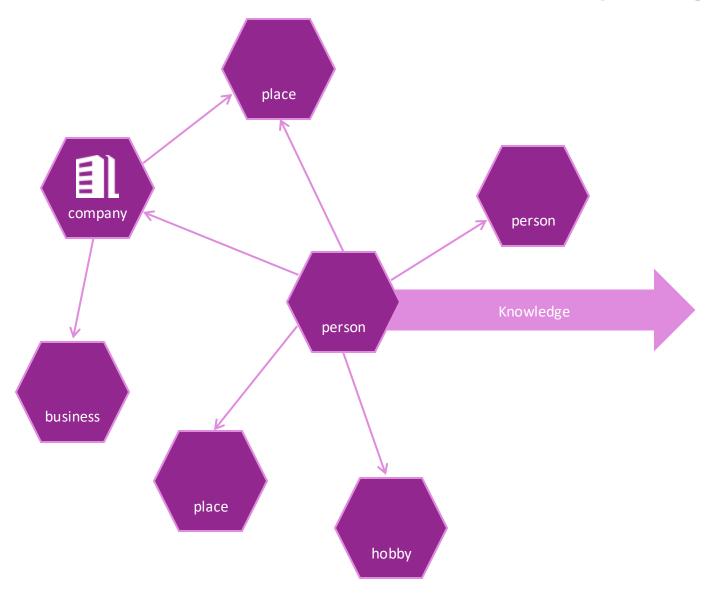
▶ 知识图谱的核心价值

数据到知识的飞跃

赋予数据明确的语义和逻辑,理解 "A是B的父亲"

背景知识的支撑

- 提供专业领域的背景知识和常识
- 提供深层次语义理解,支撑智能 问答应用



基座模型

基座模型 (Foundation Model) 是指一类在海量、 广泛、多样化的未标记数据上进行训练的大型 模型

知识图谱基座模型

- 在大量知识图谱数据上进行训练的大模型
- 可以迁移到训练时未见过的实体和关系上
- 通过"预训练+微调"模式,提供通用知识表示与推理能力

通用知识表示与领域适配需求

传统知识图谱构建成本高、 迁移难、更新慢

支持可迁移的知识图谱表示

PART 2

问题: 知识图谱面临的挑战

▶ 知识图谱的不完备性

不完备性

限制:知识图谱往往存在大量事实缺失

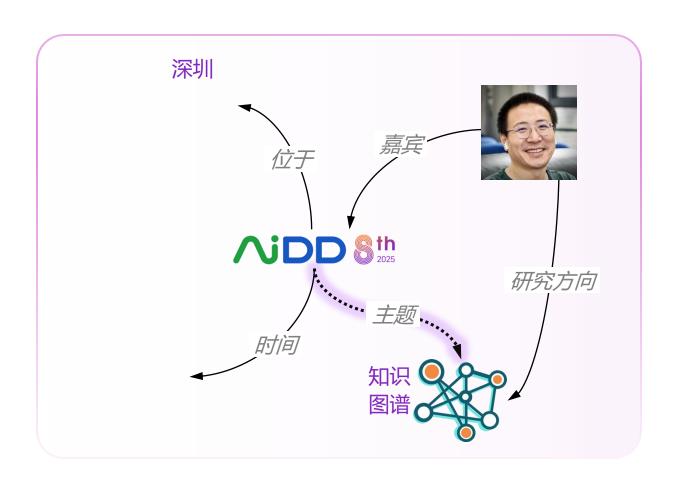
假设: 开放世界假设

问题:如何补全缺失的事实?

图谱补全

任务:链接预测、关系预测

示例:基于已有事实,推理得到新结论



▶ 知识图谱的动态性

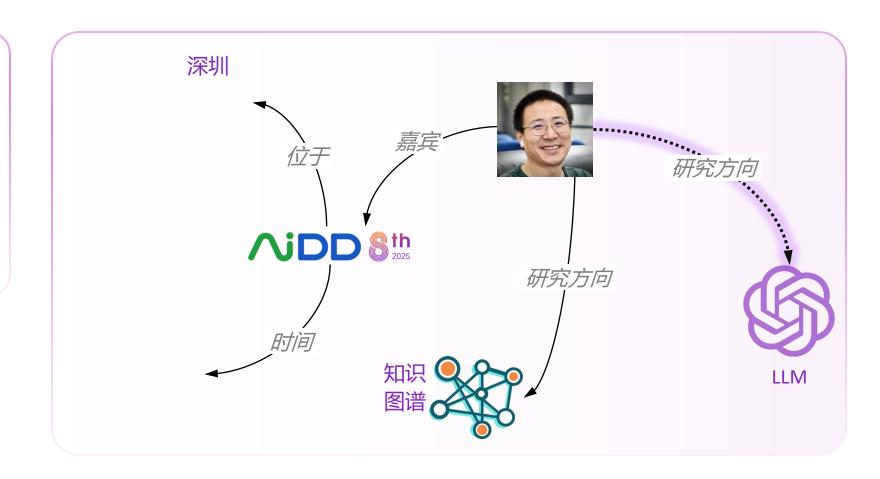
动态性

限制:知识图谱需要持续更新

原因:真实世界变化

表现:新实体、新关系、新事实

问题:如何表示新内容?



▶ 知识图谱的开放性

开放性

限制:不同的知识图谱被分散构建

常见的知识图谱类型:

- 通用知识图谱
- 领域知识图谱
- 企业知识图谱

问题:如何迁移图谱、融合知识?

PART 3

解决:可迁移的知识表示

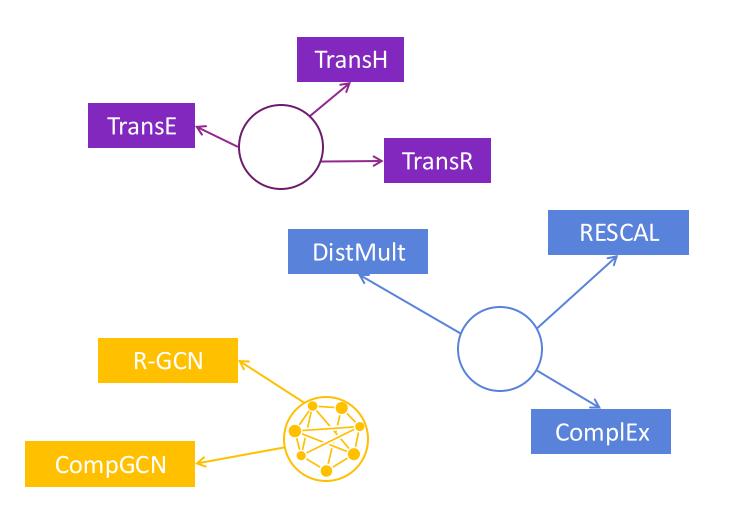
▶ 传统的知识图谱表示学习

表示学习的需求

知识图谱是一种符号化的、结构化的知 识表示形式。表示学习可以让机器学习 模型高效地利用这些知识,并进行复杂 的推理和预测,补全缺失信息

传统表示学习泛化性困境

- 无法处理训练时没有见过的新实体、 新关系
- 不同任务之间的表示难以直接迁移
- 知识更新成本较高
- 需求:通用知识表示



▶ 单知识图谱内的知识迁移

知识的更新

- 增量学习新的知识
- 处理灾难性遗忘问题

知识的迁移

模型可以复用 (迁移) 先前 学习到的通用关系模式和实 体特征

新知识的表示

持续学习允许模型利用所有 历史知识为新出现的稀疏实 体找到一个合理的初始表示

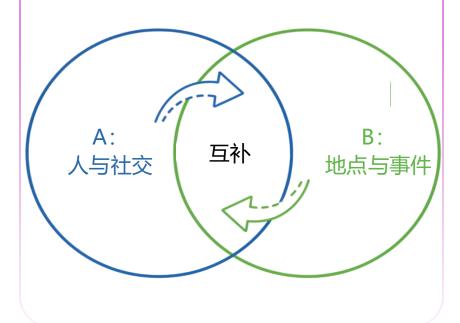
前向 vs 后向更新

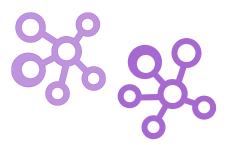
- 学习新实体表示
- 更新旧实体表示

▶ 多知识图谱间的知识迁移

多源知识图谱互补

利用互补知识增强图谱内的表征学习





基座模型

预训练基座模型,泛化到任意新图谱

预训练

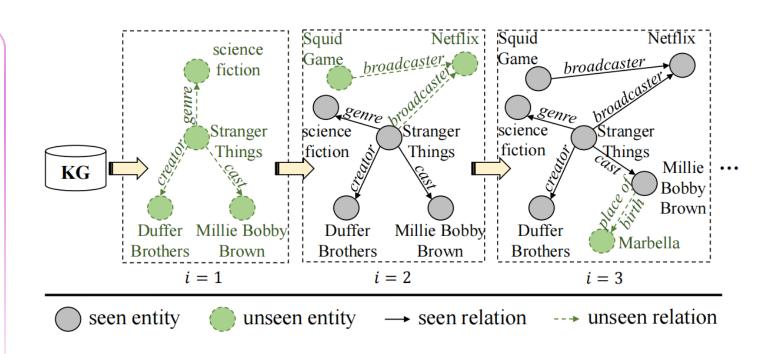
下游应用

PART 4

实现:从持续学习到基座模型

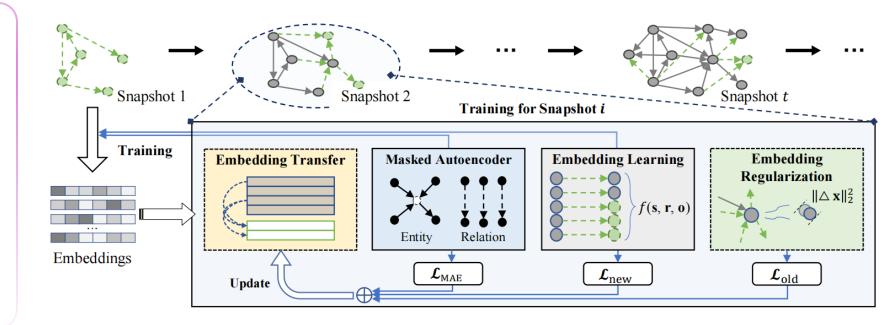
新实体、关系、事实

- 真实知识图谱往往是不断增长的,新 实体、新关系伴随新事实不断涌现
- 传统方法无法编码新增的实体和关系, 也无法从新增事实中学习新知识来更 新模型
- 简单的微调会覆写已学习的知识,造 成旧知识的灾难性遗忘
- 频繁的重新训练成本太高,会浪费已 学习的知识



新知识 vs 旧知识

- 在每批新增事实上持续微调 模型, 既学习新知识, 又避 免灾难性遗忘旧知识
- 掩码自编码器学习实体表示
- 嵌入迁移学习新实体、关系 表示
- 嵌入正则化避免灾难性遗忘



Lifelong Embedding Learning and Transfer for Growing Knowledge Graphs

Relation

Masked Autoencoder

Entity

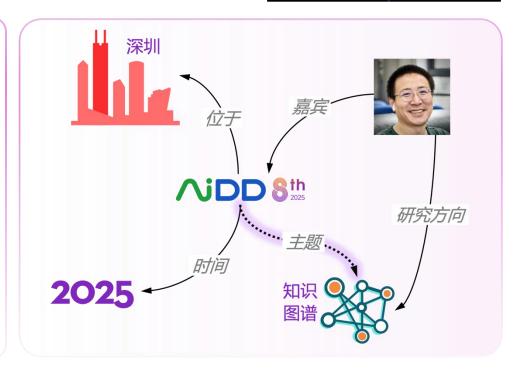
带掩码的自编码器

- 在每批新增事实上持续微调模型, 既学习新知识, 又避免灾难性遗忘 旧知识
- 新知识:新的实体、新的关系

哪些参数更值得保护?如何 自适应调整各实体的可塑性?

自编码模块联合新旧事实重建中心实 体和关系的表征向量,从而在已学习 参数协同下学习新知识, 在局部图结 构中平衡新旧知识的学习

应该更新哪个实体?

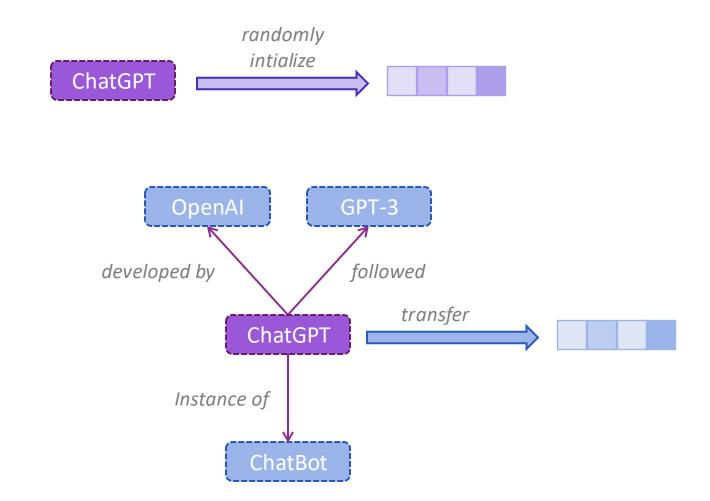


迁移策略

- 保持局部语义空间的稳定性
- 加速新知识学习
- 迁移已习得的知识

随机初始化的新实体和关系 表征向量会扰动表征空间

基于已有表征初始化新实体和关系的 表征向量,避免对嵌入空间的大幅扰 同时使新表征接近收敛位置,加 速新知识学习



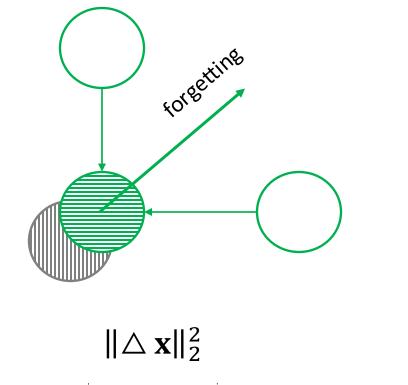
Lifelong Embedding Learning and Transfer for Growing Knowledge Graphs

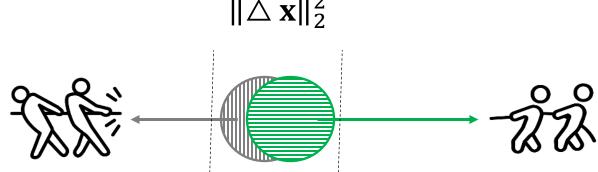
正则化更新约束

- 参数更新无法避免对已习得知识的遗忘
- 根据图结构约束更新
- 避免重要参数知识的灾难性遗忘

如何避免重要参数的灾难性遗忘?

正则化约束更新,基于局部子图中每个实 体对于相关事实的重要性,计算正则化约 束权重,从而避免重要知识的灾难性遗忘





Lifelong Embedding Learning and Transfer for Growing Knowledge Graphs

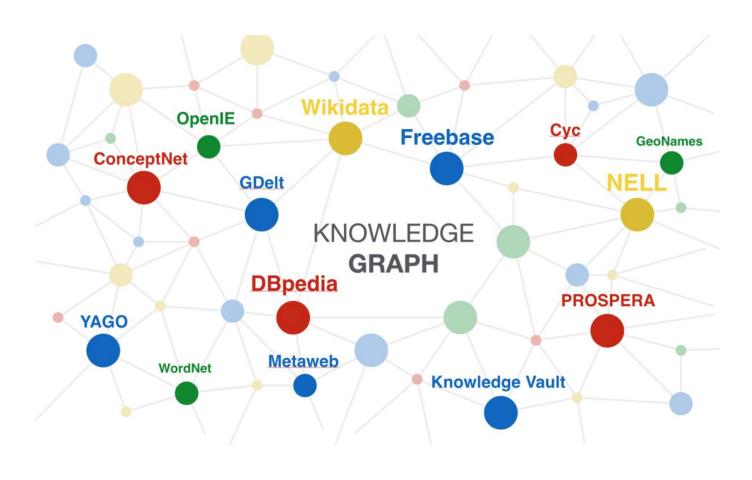
多源知识图谱包含互补知识

- 最近研究表明多个图谱包含互补知识, 联合训练可提高模型表征能力
- 然而, 旧联合表征无法在新图谱上复用 预训练模型

knowledge complementarity

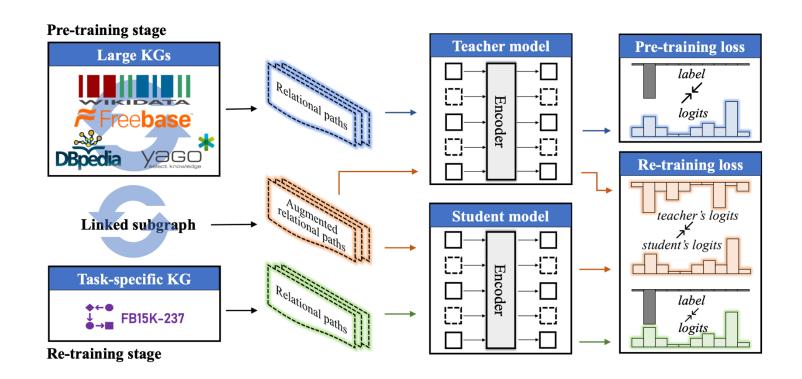
knowledge transfer

model reuse and distillation



多源图谱预训练整体框架

- 联合预训练
 - > 背景知识图谱上预训练教 师模型
- 局部重训练
 - 从教师模型中蒸馏知识, 在目标知识图谱上训练学 生模型

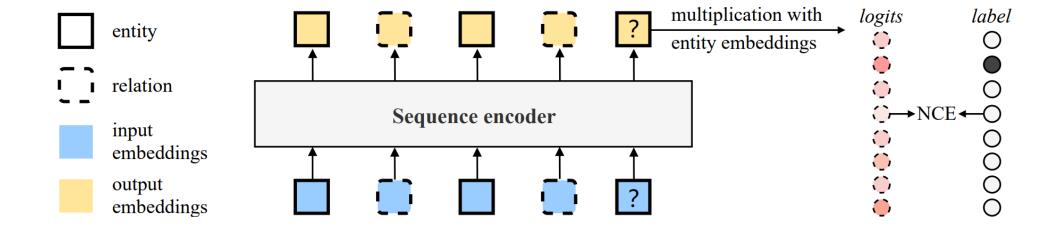


关系路径: 定义

- (x_1, x_2, \dots, x_t) 为一条关系路径
- $x_1, x_3, \dots, x_{2n+1}$ 为实体
- x_2, x_4, \dots, x_{2n} 为关系

关系路径: 编码器

- $(x_1^L, x_2^L, \dots, x_t^L) = \text{Encoder}(x_1^0, x_2^0, \dots, x_t^0)$
- 尝试使用三类 Encoder: RNN、RSN 和
 Transformer

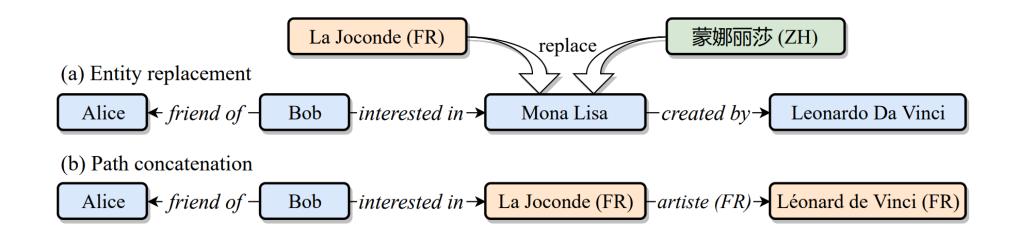


联合预训练: 路径数据构造

- 实体替换
- 路径拼接

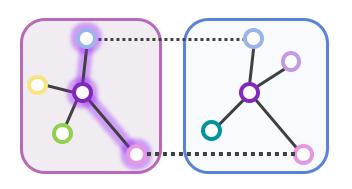
联合预训练:目标

- 给定上下文,预测缺失掩码实体或关系
- (掩码)关系预测
- (掩码) 实体预测



局部重训练:链接子图

- 链接子图
 - ▶ 背景知识图谱和目标知识图谱 共享的"公共空间"
 - > 参与再训练实现知识迁移
- 如何生成链接子图?
 - > 按权重采样邻居
 - > 限制子图大小



背景 KG

目标 KG

链接子图

局部重训练:知识迁移

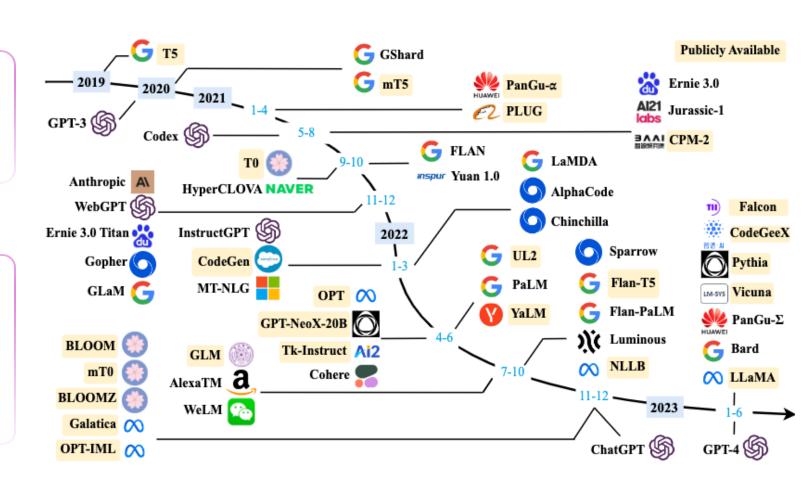
- 特征知识蒸馏:
 - > 实体的输入表示视为特征知识
 - 链接子图中对齐的实体在学生模型和教师模型中应具有相似表示
- 网络知识蒸馏:
 - 教师模型各层的参数知识可以指导学生模型各层参数的学习
- 预测知识蒸馏:
 - ▶ 链接子图为实体预测构建了共同的标签空间,对齐两个模型的预测概率(KL 散度)

图谱的孤立问题

现有工作仍然需要在每个图谱上分别训 存储一个独立的模型,将每个图谱 视作独立的数据孤岛

基座模型泛化能力

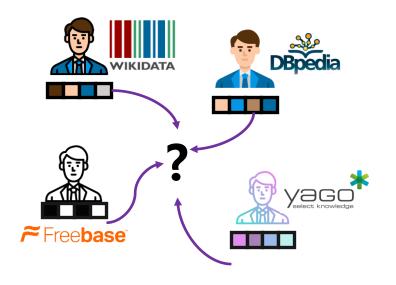
- **Graph Foundation Model**
- 支持多领域应用的预训练模型
- 共享统一的模型架构和知识表征
- 强大的迁移能力和泛化能力

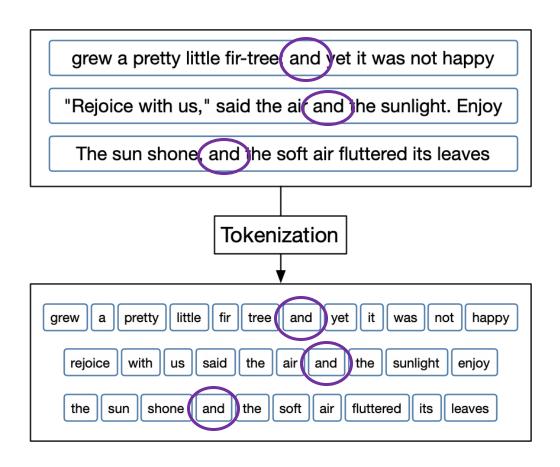


基座模型的关键:用同一种"语言"表达不同语句

统一分词是自然语言基座模型成功的关键基础之一

知识图谱基座模型的需求: 如何统一表示知识图谱?



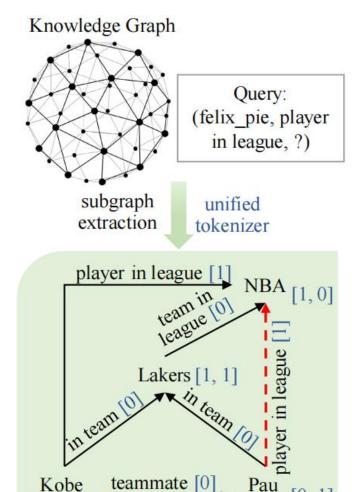


基座模型统一表示: 提示图

- 推理示例:包含查询关系的训练样本 (u,q,v)
- 提示图:
 - ▶ 包含推理示例的图谱子图
 - 提示图包含该关系推理需要的重要信息

基座模型统一表示:统一分词器

- 以推理示例为条件 (u,q,v),统一表征不同图谱提示图中的 实体、关系
- 实体 e 分词:
 - \triangleright 编码提示图中实体 e 到头尾实体 u,v 的距离信息
- 关系r分词:
 - 编码关系 r 是否为查询关系 q 的 01 信息



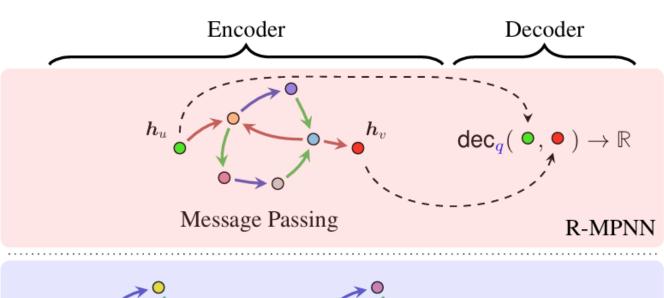
Bryant[1, 1]

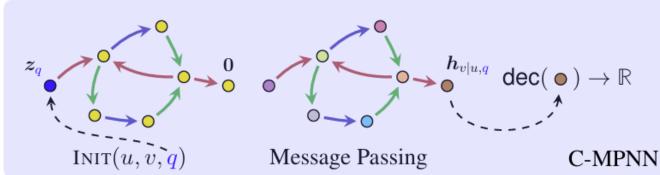
传统表征: R-MPNN

- 全局编码,每个实体和关系对应一个特定 表征
- 无任务感知、以依赖特定实体和关系

相对表征: C-MPNN

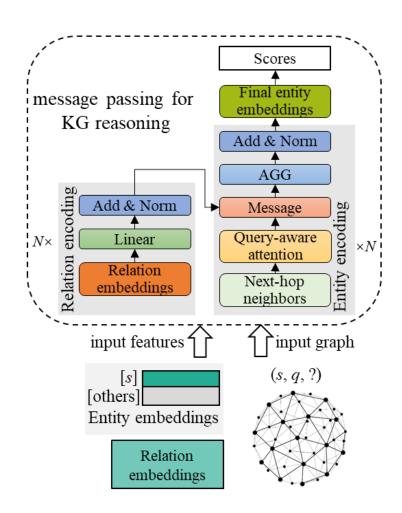
- 将查询 (u,q,?) 作为条件,用于结点特征初 始化
- 消息传递过程可以做到任务感知,对特定 实体、关系无依赖

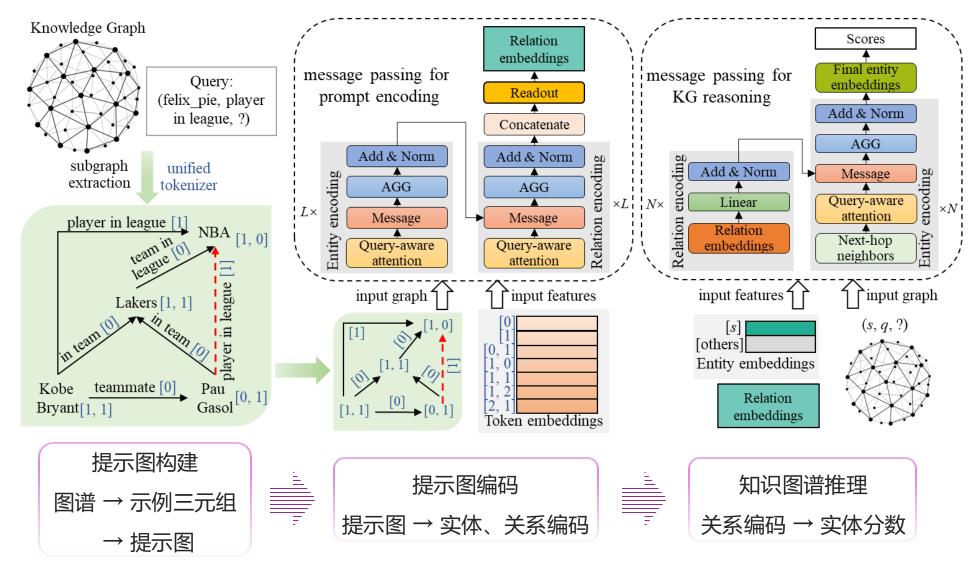




知识图谱编码与推理

- 特征初始化:
 - 基于提示图、统一分词器进行初始化
- 知识图谱编码:
 - ▶ 相对表征
 - 从主语实体出发,逐跳扩展进行消息传递
- 实体打分:
 - > 读取最后一层的实体编码并打分

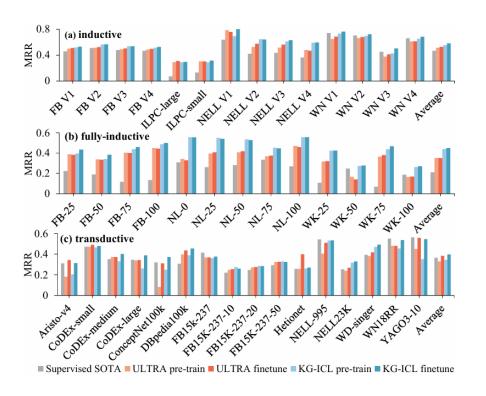




Datasets	Supervised SOTA		ULTRA pre-train		KG-ICL pre-train		ULTRA finetune		KG-ICL finetune	
	MRR	H@10	MRR	H@10	MRR	H@10	MRR	H@10	MRR	H@10
FB V1	0.457	0.589	0.498	0.656	0.520	0.678	0.509	0.670	0.531	0.700
FB V2	0.510	0.672	0.512	0.700	0.565	0.749	0.524	0.710	0.568	0.768
FB V3	0.476	0.637	0.491	0.654	0.535	0.695	0.504	0.663	0.537	0.704
FB V4	0.466	0.645	0.486	0.677	0.513	0.699	0.496	0.684	0.525	0.706
ILPC-large	0.070	0.146	0.290	0.424	0.288	0.412	0.308	0.431	0.295	0.411
ILPC-small	0.130	0.251	0.302	0.443	0.288	0.446	0.303	0.453	0.316	0.473
NELL V1	0.637	0.866	0.785	0.913	0.693	0.915	0.757	0.878	0.841	0.995
NELL V2	0.419	0.601	0.526	0.707	0.644	0.835	0.575	0.761	0.641	0.835
NELL V3	0.436	0.594	0.515	0.702	0.613	0.792	0.563	0.755	0.631	0.799
NELL V4	0.363	0.556	0.479	0.712	0.590	0.791	0.469	0.733	0.594	0.802
WN V1	0.741	0.826	0.648	0.768	0.733	0.838	0.685	0.793	0.762	0.827
WN V2	0.704	0.798	0.663	0.765	0.696	0.783	0.679	0.779	0.721	0.787
WN V3	0.452	0.568	0.376	0.476	0.425	0.548	0.411	0.546	0.503	0.626
WN V4	0.661	0.743	0.611	0.705	0.652	0.722	0.614	0.720	0.683	0.749
FB-25	0.223	0.371	0.388	0.640	0.396	0.656	0.383	0.635	0.434	0.694
FB-50	0.189	0.325	0.338	0.543	0.341	0.559	0.334	0.538	0.384	0.598
FB-75	0.117	0.218	0.403	0.604	0.438	0.633	0.400	0.598	0.458	0.664
FB-100	0.133	0.271	0.449	0.642	0.487	0.694	0.444	0.643	0.499	0.703
NL-0	0.309	0.506	0.342	0.523	0.557	0.777	0.329	0.551	0.555	0.765
NL-25	0.261	0.464	0.395	0.569	0.550	0.736	0.407	0.596	0.540	0.730
NL-50	0.281	0.453	0.407	0.570	0.534	0.704	0.418	0.595	0.528	0.708
NL-75	0.334	0.501	0.368	0.547	0.452	0.673	0.374	0.570	0.446	0.681
NL-100	0.269	0.431	0.471	0.651	0.556	0.762	0.458	0.684	0.557	0.766
WK-25	0.107	0.169	0.316	0.532	0.423	0.621	0.321	0.535	0.425	0.628
WK-50	0.247	0.362	0.166	0.324	0.273	0.430	0.140	0.280	0.277	0.432
WK-75	0.068	0.135	0.365	0.537	0.437	0.602	0.380	0.530	0.466	0.626
WK-100	0.186	0.309	0.164	0.286	0.262	0.409	0.168	0.286	0.270	0.415
AristoV4	0.311	0.447	0.182	0.282	0.203	0.306	0.343	0.496	0.313	0.480
CoDEx-small	0.473	0.663	0.472	0.667	0.465	0.654	0.490	0.686	0.479	0.662
CoDEx-medium	0.352	0.490	0.572	0.525	0.530	0.474	0.372	0.525	0.402	0.565
CoDEx-large	0.345	0.473	0.338	0.469	0.261	0.376	0.343	0.478	0.388	0.508
ConceptNet100K	0.320	0.553	0.082	0.162	0.249	0.416	0.310	0.529	0.371	0.584
DBpedia100K	0.306	0.418	0.398	0.576	0.390	0.541	0.436	0.603	0.455	0.604
FB15k-237	0.415	0.599	0.368	0.564	0.359	0.541	0.368	0.564	0.376	0.538
FB15k-237-10	0.219	0.337	0.248	0.398	0.274	0.433	0.254	0.411	0.260	0.416
FB15k-237-20	0.247	0.391	0.272	0.436	0.285	0.454	0.274	0.445	0.284	0.456
FB15k-237-50	0.293	0.458	0.324	0.526	0.329	0.520	0.325	0.528	0.324	0.499
Hetionet	0.257	0.403	0.257	0.379	0.260	0.371	0.399	0.538	0.269	0.402
NELL-995	0.543	0.651	0.406	0.543	0.532	0.653	0.509	0.660	0.534	0.672
NELL23K	0.253	0.419	0.239	0.408	0.317	0.532	0.268	0.450	0.329	0.552
WD-singer	0.393	0.500	0.382	0.498	0.470	0.582	0.417	0.526	0.493	0.599
WN18RR	0.551	0.666	0.480	0.614	0.455	0.527	0.480	0.614	0.536	0.637
YAGO3-10	0.563	0.708	0.451	0.615	0.352	0.503	0.557	0.710	0.545	0.688
Average	0.351	0.493	0.396	0.557	0.442	0.606	0.421	0.590	0.473	0.638

· 43 个数据集上的详细实验结果

- ➤ 在大多数据集上取得 SOTA 结果
- ➤ 不止在预训练数据集上有明显提升

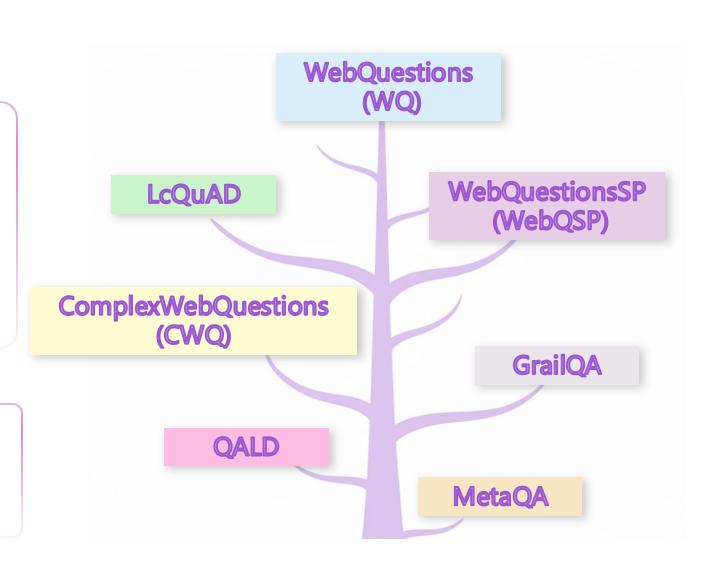


LLM 和 KG 在 QA 的应用如何泛化?

- 现有工作训练 GNN 或微调 LLM,提高 LLM 在 KGQA 领域的能力
- 问题:
 - ➤ 依赖于特定的 GNN 训练或 LLM 微调,泛 化能力受限
 - ➤ 微调 LLM 的开销较大

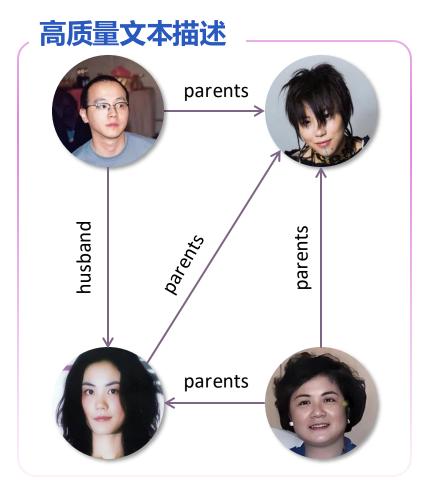
GFM 和 LLM 的结合

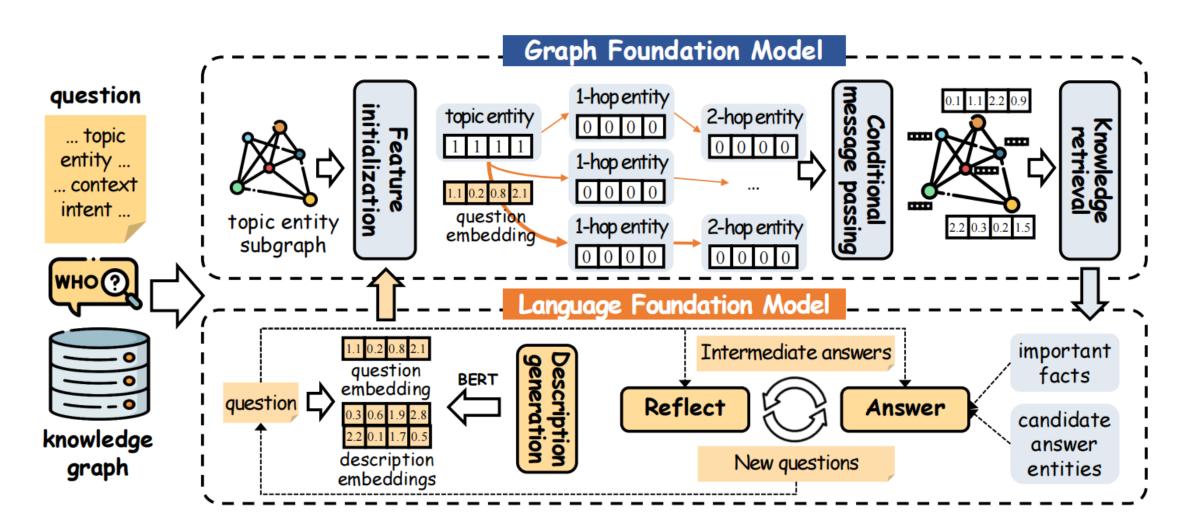
- Graph Foundation Model (GFM) 提供可迁移的图 理解能力
- LLM提供强大的问答能力



如何泛化到没有见过的 KG?

- **Question-Conditioned Graph** Foundation Model
- 以问题为条件的图基础模型,无需 再训练或微调
- 表示没有见过的实体: 01 向量
- 表示没有见过的关系: 文本编码
 - 不同 KG 的语法异质性
 - 关系缺乏高质量的文本描述

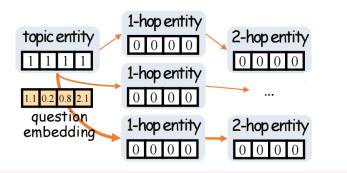




特征初始化

关系: BERT 文本编码 LLM 生成的关系描述

实体: 01 向量编码



以 Question 为条件的消息传递

获取实体、关系相对条件的表征:

$$\mathbf{r}^{(i+1)} = \mathbf{W}_{1}^{(i)} \left[\mathbf{r}^{(i)} ; BERT(q) \right],$$

$$\mathbf{e}^{(i+1)} = \sum_{(s,r,e)\in\mathcal{N}_{\mathcal{P}_q}^{(i)}(e)} \mathbf{W}_2^{(i)} \operatorname{MSG}^{(i)}(s,r,q),$$

$$MSG^{(i)}(s, r, q) = \alpha_{s;r;q}^{(i)} \left(\mathbf{s}^{(i)} + \mathbf{r}^{(i)} \right),$$

预训练目标

是否能预测出正确答案?

损失函数: 多分类对数损失

$$\mathcal{L} = \sum_{(q_i, \mathcal{A}_{q_i}, \mathcal{P}_{q_i}) \in \mathcal{D}} \left(-\sum_{a \in \mathcal{A}_{q_i}} \frac{c_{a;q_i}}{|\mathcal{A}_{q_i}|} + \exp\left(\log\left(\sum_{e \in \mathcal{E}} c_{e;q_i}\right)\right) \right).$$

知识抽取

抽取候选实体:

$$C_q = \text{Top}_k \{e: c_{e;q} | e \in \mathcal{E}\}$$

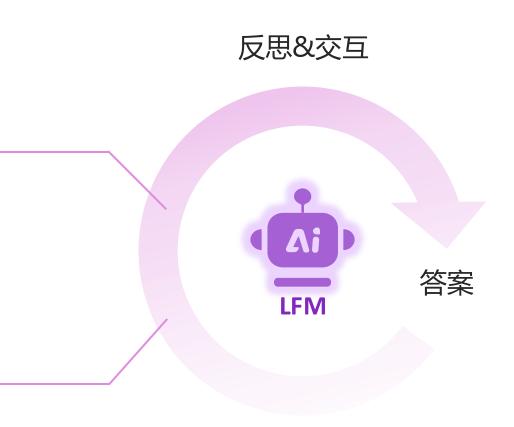
抽取重要事实三元组:

$$\mathcal{I}_{q;e} = \text{Top}_{n}\{(s, r, e): \alpha_{s;r;q}^{\max} | (s, r, e) \in \mathcal{T}_{e}\}$$

问题生成

复杂问题需要多轮搜索:问题重写

新问题的查询:关键实体识别



PART 5

总结:基座模型与知识智能体

基座模型的发展方向

融合大语言模型

知识图谱基座模型可以作为大语言模型的外 部知识存储器,辅助知识抽取和调用

轻量化

压缩知识图谱基座模型,适配不同计算场景

知识表示进化

基座模型知识修正,反馈迭代知识更新

多模态

统一多模态知识图谱表示内容, 同时利用结 构化事实和非结构化描述进行推理

可解释性

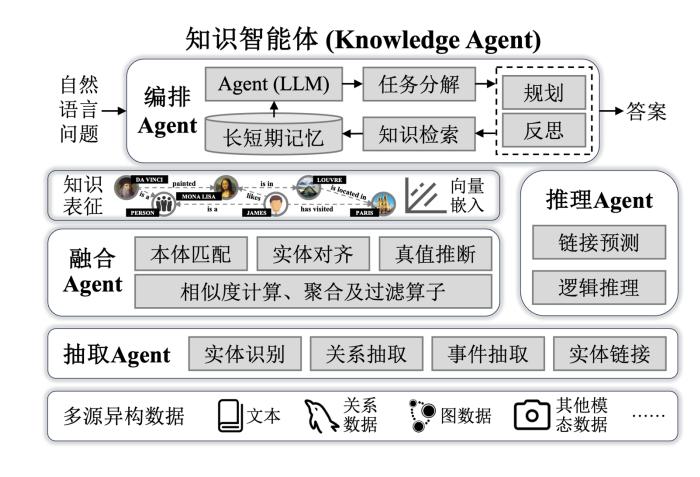
提高知识图谱基座模型的决策和推理过程的 透明度,增强模型的可靠性和信任度

微调

探索知识图谱基座模型适应不同下游任务的 微调方法

知识智能体

- 智能体是能够感知环境并自主采取行动以实现目标的实体
- 知识智能体以大模型为底座,面向多源异构数据,由抽取、融合、推理、编排等子智能体组成
- 具备知识获取与推理、任务规划与思考、记忆管理与检索、使用工具函数等复合能力
- 能自主完成知识处理关键任务并持续自我进化,为大模型处理复杂任务提供可解释、可追溯的知识支撑体系



- [AAAI '23] Yuanning Cui, Yuxin Wang, Zequn Sun, Wenqiang Liu, Yiqiao Jiang, Kexin Han, Wei Hu*.
 Lifelong embedding learning and transfer for growing knowledge graphs.
- [KDD '23] Zequn Sun, Jiacheng Huang, Jinghao Lin, Xiaozhou Xu, Qijin Chen, Wei Hu*.

 Joint pre-training and local re-training: Transferable representation learning on multi-source knowledge graphs.
- [NeurIPS '24] Yuanning Cui, Zequn Sun, Wei Hu*.
 A prompt-based knowledge graph foundation model for universal in-context reasoning.
- [Submitted] Yuanning Cui, Zequn Sun, Wei Hu, Zhangjie Fu*.
 KGFR: A foundation retriever for generalized knowledge graph question answering.

实验室网站:

- http://ws2.nju.edu.cn/kgwiki/
- https://github.com/nju-websoft
- https://cs.nju.edu.cn/lm/

科技生态圈峰会+深度研习

——1000+技术团队的共同选择

时间: 2026.05.22-23

时间: 2026.08.21-22

时间: 2026.11.20-21

AiDD峰会详情

产品峰会详情

EDEAI+ PRODUCT INNOVATION SUMMIT 01.16-17 · ShangHai AI+产品创新峰会

Track 1: AI 产品战略与创新设计

从0到1的AI原生产品构建

论坛1: AI时代的用户洞家与需求发现 论坛2: AI原生产品战路与商业模式重构

论坛3: AgenticAl产品创新与交互设计

2-hour Speech: 回归本质

用户洞察的第一性

--2小时思维与方法论工作坊

在数字爆炸、AI迅速发展的时代, 仍然考验"看见"的"同理心"

Track 2: AI 产品开发与工程实践

从1到10的工程化落地实践

论坛1: 面向Agent智能体的产品开发 论坛2: 具身智能与AI硬件产品

论坛3: AI产品出海与本地化开发

Panel 1: 出海前瞻

"出海避坑地图"圆桌对话

--不止于翻译: AI时代的出海新范式

Track 3: AI 产品运营与智能演化

从10到100的AI产品运营

论坛1: AI赋能产品运营与增长黑客 论坛2: AI产品的数据飞轮与智能演化

论坛3: 行业爆款AI产品案例拆解

Panel 2: 失败复盘

为什么很多AI产品"叫好不叫座"?

--从伪需求到真价值: AI产品商业化落地的关键挑战

智能重构产品数据驱动增长

Reinventing Products with Intelligence, Driven by Data

感谢聆听!

扫码领取会议PPT资料

