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PART 01
Background

“Why do we need In Context Learning?

n




» The Development of GPT 1 Background | LM

GPT-2 (2019) GPT-3 (2020) GPT-4 (2023)
175B Parameters
In-context Learning

GPT (2018)

1.5B Parameters
Prompt Engineering

o © 3 O,

— ( ) /| | D
,I l‘ '—‘ D
G
Pre- Fine-
training tuning Multimodal
é WS |n-context Qa é
Examples Image  Text Video
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» 1 Background | LM

GPT-2’s Capability of Prompt Engineering
® GPT-2 exhibits a distinctive feature known as “prompt engineering”.

® This can be compared to the architecture of modern computers, where both data and
commands exist in the form of Os and 1s encoding.

¢TTTTTTTTTTT T s mm oo N nil
i1011010110001010101i1011001 o CPU = 0110
N / yu

 What i ot | Odd
 What is the rule of the number lists? : ' [1,3,5,7,9] GPT-2 sequence.

_____________________________________
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» 1 Background | LM

GPT-3’s Capability of In-Context Learning

® GPT-3 possesses a unique capability known as “In-context learning”.

® [t will learn the representation of tasks from the provided in-context examples.

e e e e e e e e e e e e e e e e e e e e e e e e e =

| : Odd

' What is the rule of the number lists? | = [1,3,5,7,9] @ GPT-2 sequence.
T :

 Lists: [1,3,5,7,9,11,13] Rule: Arithmetic sequence.

 Lists: [2,4,8,16,32,64] Rule: Geometric sequence. @ GPT-3 Fibonacci
. . sequence.

——————

Lists: [1,1,2,3,5,8,13] Rule: Instruction . ' Data

______
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» Why In-Context Learning? 1 Background | ICL

few shot
Prompt Engineering > In-Context Learning
Yield precise responses A specialized prompt engineering
Unlock the potential of LLMs Adapt to a task using a few examples
_ (Review: Delicious food!  Sentiment: Positive |
k Demonstration Review: The food is awful. Sentiment: Negative
3 Examples
% Template N Review: Terrible dishes!  Sentiment: Negative
Review: [Text] Queev:'/y {\Review: Good meal! Sentiment: )
,‘; Sentiment: [Label] l Input
.
| ‘ TextT Label Large Language Model
gyt Delicious food! 1 Parameter Freeze
The food 1s awful. ()

Terrible dishes! 0 1 Output

Positive




» Why In-Context Learning? 1 Background | ICL

"outside-in" methodologies to unravel the inner properties of LLMs

“Best movie ever.” >

Sentiment: .

“I like it.” Sentiment: ? @
"

‘/

“Best movie ever.” — m

How many meters does a
1-kilogram object fall in
1 second?

What about

i

00,04 10-kilogram? Sentiment:
A “I like it.” Sentiment: ?
- “ —
Objects fall with a constant acceleration due to Providing incorrect examples does not affect the
gravity, regardless of their mass. LLM's ability to make correct judgments.

® Flexible controllability

s ok ® Encapsulate more information
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4 1 Background | Multimodal

GPT-4: Large Multimodal Model

[ What is LMM? ] Process visual data & understand and generate natural language

_ How does this food taste?
What color is

I
the purse? Sl

Delicious, especially the cake!

l' l\

Answer questions about the images Refer to visual information in conversations

[ How about GPT-4? ]

These two images
represent two
different robots,
respectively--

Excellent Multimodal capabilities ~ Not open-source

Incorporate the understanding of visual content Internal workings and training processes are opaque
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1 Background | Multimodal

Why Multimodal Model In-Context Learning?

The development of large models Expands the application scope of the model:
from single-modal to multi-modal various image/video understanding tasks.
Visual Question Answering Image Caption
. aa Image , ,
2| Q: What color A table with .
Text é () ( —_ ) é Text - 4l is the purse? bread and R %%Tes y:
A ) (7 ) T, wihY  A: Blue. milk on it. Hs '




4 1 Background | Multimodal

Why Multimodal Model In-Context Learning?

® Less research in the Multimodal Model In-Context Learning
® Most of the work only considers the field of Natural Language Processing
( )

® Some large multimodal models are not well adapted to in-context learning, such as
miniGPT-4, LLAVA, mPLUG owl, etc.

® |arge multimodal model with good in-context learning: , Otter, IDEFICS:

sequential images, different instructions

v in-context examples query
MMC4 . Instruction: What is Instruction: Why did Instruction: Why is Instruction: Instruction: Why is
billion-scale corpus of _— the main thing the player in red who the man in the red Description of the the whole video
images interleaved with text - happening in this was attacking fall to jersey about to stand videos humorous humorous?
picture? the ground? up from the ground? moment?

OpenFlamingo
EEEEEEE S EEEEEe

)
&
T

B 3 = N T 1
: < Q;‘} : " ‘\{‘:;::3 \‘\;\I\
LRR R ]| Tl S o
MIMIC-IT & T — RE——.
multi-modal instruction - | B N B N N N - EEEEEes - EEEEEs

. A Answer: A group Answer: Because Answer: Because ..the Answer: A man on the Answer: The funny
tuning datasets with

. 1 of ..attack and look he ..the ground to ball go in and didn't pitch falls down thing .. it's funny
AM-EEEEE SEMPLES otter for an opportunity to try to create a need to pretend to after a shot, .. \with how his injury seems
shoot. penalty. create a penalty. his teammates. to heal in an
instant.
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PART 02
Heuristic-based
configuration strategies

“Take IC and VQA as examples”




> 2 Heuristic-based | Caption

Exploring Diverse In-Context Configurations for
Image Captioning (NIPS 2023)

Xu Yang, Yongliang Wu, Mingzhuo Yang, Haokun Chen, Xin Geng

arXiv: https://arxiv.org/abs/2305.14800
code: https://github.com/yongliang-wu/ExploreCfg
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> 2 Heuristic-based | Caption
Exploring Diverse In-Context Caption: Background and Motivation

® Transitioning from single-modal to multi-modal leads to increased complexity.
® |n image modality, which image optimizes testing?
® |n caption modality, what is the ideal choice for model generation?

Query

Which pair

Is better?
Query
[ Review: Good meal! Sentiment: ]
Candidates Retrieve
v
Review: Delicious food! Sentiment: Positive

Review: The movie is awful.  Sentiment: Negative

Review: Terrible dishes! Sentiment: Negative GTs Select

\ 4

A bunch of bananas hanging from a wire.
A bunch of bananas stuck on a line above a kitchen.

Bushels of bananas hanging from a rope in a store.
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> 2 Heuristic-based | Caption
Given a test image, how to select the proper image?
B Random Selection (RS): Randomly select k examples for few-shot in-context learning.
B Similarity-based Image-lmage Retrieval (SIIR)
B Similarity-based Image-Caption Retrieval (SICR)
B Diversity-based Image-lmage Retrieval (DIIR)

[car

near
Nman|

RPN +i-> SG - [man| .
N @/ . L
. (bike] ...
wwh 1) Scene Graph
Extractor @ ¥
From Ca’\near

Top-N Samples

< CLIP <} %,
>

BN —» CLIP —»

Vision Encoder e
Vision Encoder

Top-N Samples < CLIP «-{+

4i-» SG —* rman| Jcar
| Yon
Vision Encoder Scene Graph bike e T T
Extractor A manis riding
A b s a bike on the S
(a) SIIR-CLIP (b) SIIR-TAG street. op-N Samples

\o > CLIP —>

|

A LA __[ {object, relation,

SIR-TAG  —=l
, class} ‘ 2

Skl Scene Graph Text Encoder

oot dass Top-N Samples —
I l A dogis lying [rmmmm———————
sall.| Tobject,relation, | [ & Dot product}
, class} | | E

Scene Graph i @ AND

Extractor e MY
Y

(c) DIIR-TT (d) SICR-CLIP




> 2 Heuristic-based | Caption
Given the selected image, how to choose the suitable caption?

B Ground Truth Caption (GTC)

B Model Generated Caption (MGC)

B Model Generated Caption as Anchor (MGCA)
B [terative Prompting (IP)

Each image has five human-annotated captions.
Choose the first caption in our experiments

Use a VLM or an offline captioner to generate corresponding caption

4 N\
Compute which GTC have higher CIDEr with the generated caption. <
\_ J
4 )
Generate captions and then using these captions paired with the «
L Images to iteratively prompt VLM for enhanced captions
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> 2 Heuristic-based | Caption

Exploring Diverse In-Context Caption: Caption Assignment Strategies

® Model Generated Caption (MGC)
® Given an image, we can use a VLM or an offline captioner to generate caption.
® [t might be helpful since the generated caption usually have the same pattern with the output.

Vision Language Model
Or

Offline Captioner

A little girl eating a piece of
chocolate cake.




> 2 Heuristic-based | Caption

Exploring Diverse In-Context Caption: Caption Assignment Strategies

® NModel Generated Caption as Anchor (MGCA)
® Once get the generated caption, We can compute CIDEr scores to find the best caption.
® The selected one will have the advantages of both GTC and MGC, more precise expression
and more consistent pattern.

Model Generated Caption Ground truth Caption
W ~ ™
A little girl eating a piece of Select S (1) A close up of a young person at a table eating cake.
chocolate cake. J 2 A small girl takes a bite of chocolate cake.

(3 A young girl eating a piece of chocolate cake.
4) A little girl taking a big bite out of chocolate cake.
(5 A young child enjoying a serving of cake and ice cream.

- J

We can use the model-generated caption as anchor to select the best caption from human-annotated captions.

2024 Al+B B FIES | ALK EH B &35 # 58 T A i




> 2 Heuristic-based | Caption
Exploring Diverse In-Context Caption: Conclusions

® Similar Images lead to short-cut inference.
® (1) Same as test image (2) Similar images (3) Random images
® Ensure the captions are irrelevant to the images to avoid biased inferences.

b o) b e

Along table with a plant| (A table is adorned with rned with |

on top of it surrounded wooden chairs with blue wooden chairs with red
\with wooden chairs. | laccents. accents. ) )

similarity :

A long table with a plant | (A table is adorned with |
on top of it surrounded wooden chairs with blue | e e e
with wooden chairs. | laccents.

performance

= A 3 == B | A
Along table with a plant |  [A table is adorned with

on top of it surrounded wooden chairs with blue | ¢ e e
| with wooden chairs. accents.

| | A car with a sign that
| |says stop. v
i J

From top to bottom: The outputs start from imitation to inferencing from the vision cues.




»

Exploring Diverse In-Context Caption:

2 Heuristic-based | Caption

Conclusions

® Simpler sentence patterns are more easily recognized by the VLM.

® Ground truth captions use more diverse words and complex patterns
Which have more precise expression

® Model-generated captions have more salient objects and simple patterns

Which have more consist patterns

A row of motorcycles
parked in front of a street.

parked in front of a
street.

Several motor scooters
are jammed into a small
| market street.

A row of parked bicycles
sitting in front of a store.

|

‘A group of motorcycles

parked in front of a

street.

'A piece of cake on a
plate with a fork.

A piece of cake on a
plate with a fork.

Rows of motor scooters
are parked in front of a
store.

4

This slice of cake looks
like half cheesecake and
khalf vanilla.

A bite is taken out of a
piece of cake.

plate with a fork and a
spoon.

This slice of cake looks
like half cheesecake and
half vanilla cake.

4

The top: Model-generated captions. The bottom: Ground truth captions.
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> 2 Heuristic-based | Caption

Exploring Diverse In-Context Caption: Conclusions

® There Is a synergy effect between the two modalities.
® \Vhen similar images are used, lower-quality captions can become toxic examples
® \WVhen dissimilar images are used, the negative effects of these low-quality captions are

diminished.
Image Similarity  Caption Quality 4-shot 8-shot 16-shot 32-ahot mean
High High 95.64 96.62 97.66 98.32 97.06
Low High 72.35 70.10 72.73 77.76 73.23
High Low 65.98 69.52 71.88 73.49 70.22
Low Low 70.45 73.92 74.83 77.00 74.05
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> 2 Heuristic-based | Answer

How to Configure Good In-Context Sequence for
Visual Question Answering

Li Li, Jiawei Peng, Huiyi Chen, Chongyang Gao, Xu Yang

arXiv: https://arxiv.org/abs/2312.01571
code: https://github.com/Garyliajia/OFv2_ICL_VOA
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» 2 Heuristic-based | Answer
How to Configure Good In-Context Sequence for VQA: Background

Explore effective In-context examples configuration strategies

Demonstrations

Query
A \
Similar Images I = I
B8 B& | | E8E
i
\ J

Adding
Instructions

2024 AlI+TREREFIEES | AR &5 i 205 4 BT 12




> 2 Heuristic-based | Answer

How to Configure Good In-Context Sequence for VQA: Background

Gain a better understanding of the inner properties of LVLM

E3 El

o0 o
‘mi@ ‘%i@

3 El
=
/
/

®

_—
/@
®
®
®

1

1

[ TR is More Crucial than TL. ] [ Short-cut Inference exists in LVLM. ] Image and Language Decoders
are not totally Compatible.
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> 2 Heuristic-based | Answer
How to Configure Good In-Context Sequence for VQA: Approach

Retrieving In-context examples

. :image [ :Question A :Answer Supporting Set .-A Query Triplet .- A Ground Truth Answer A

Random Sampling (RS)

RS A @Qump @Qumyp Retrieving via Similar Question&Answer (SQA)
1 ]
Random sampling anhot demonstrations SQA retrieve guestion-answer airs‘
.. . .. P CLIP Embeddin J: 4 - A
Retrieving via Similar Image (SI) A Do )
n-shot
. . . —A T oot e e
CLIP Embedding :p_* . -4 - . . A
g o :
TQ“‘“V mage ’ A gemensirations Retrieving via Similar Question&Pseudo Answer(SQPA)
Retrle‘llng V|a Slmllar QueStIOHS (SQ) SQPA ‘-A—p RS/ S| —}A—p -A Query Question & Pseudo
Pseudo Answer I Answer
SQ + * * n-shot demonstrations
) To
-} CLIP Embedding =% .4 - . A A > cupEmbedding —- . A - ‘ . A
op-n | A A
n-shot | ] . . .
T Query Question . *A demonstrations A Retrieve Question-Answer Pairs . -A
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> 2 Heuristic-based | Answer
How to Configure Good In-Context Sequence for VQA: Approach

Manipulating examples

[ Mismatching the Triplet ] [ Using Instructions J

Mismatching Image (Ml) Il """""""""""" "\I
o= === ~ | HE BE A ]
) o I o ! I
! 7 ® . P® | e El R itk b d
N e e e e e /

. . e.g.
Mismatching Answer (MA)
|' = - | = <image>Question:What number is on the
i 7 ® " ?. i " @ bus? Short Answer:284< | endofchunk | >
N o o o o o e e e v

<image>Question:Where would a taxi park
to wait for a customer? Short
Answer:curb< | endofchunk | >

@S EEN NN NN BN BN BN BN BN BN BN BN BN BN BN BN BN BN NN NN B

°~H ® 0~ [0~ @ <image>Question:What is the man doing in
the street? Short Answer:




»

2 Heuristic-based |

How to Configure Good In-Context Sequence for VQA: Approach

Extend TR and TL Hypothesis in the VL domain

Recognizes the distribution
of the task
Applying pre-trained priors
of LLM

COCO_val2014_000000142722.jpg  White ~ brown — green

Task Recognition ]

Itis white red
green.
Linguistic
What color e IR /T e o\
is the dog? ( )
\ —
white brown © green
Demonstration 1 rabbit
A yes
Format TR
Demonstration 2

R A

#D28946  brown

Demonstration n

The answer
is blue.

The recall of pre-

> trained visual /

knowledge

Identify:

® task format,

> @ input distribution
® |abel space from

demonstrations

Answer



» 2 Heuristic-based | Answer

How to Configure Good In-Context Sequence for VQA: Approach
Extend TR and TL Hypothesis in the VL domain

: LI T ® Treats QAs from demonstrations as
Task Learnlng Q: What color Q: Are these " .. "
is the purse? horses? tralnlng Samples

® |mplicit learning process
analogous to explicit fine-tuning

Learn the mapping relationship
between QA pairs from the
demonstrations

Q: What color is
the dog?

2024 AlI+TREREFIEES | AR &5 i 205 4 BT 12




»

2 Heuristic-based |

Answer

How to Configure Good In-Context Sequence for VQA: Approach

Extend TR and TL Hypothesis in the VL domain

In ICL , TR and TL coexist simultaneously

s ) s : s : N
Visual TR Linguistic TR Format TR
- o
el \ Answer: Answer:
- g Question: no cat
” 0 What color is R L B T
X b, the dog? Answer: DA | .".‘,, e
3 blue s ®* ° O
A Se e o ®:°_:
Query Image Query Question Demonstrations ‘o ® ot 00 %
.5 O 9 ®"
l 10", : "o >
. rabbit @ v e % @
two cows sit dog It is green. -white o
yes . . 0
red e ttar e O L
“ok e .‘ Yo | T e |
[ ' Model
/ Th answor Generation
white - brown green white  brown- green #D28946 brown s blue. Result
k \ N J
(a) (b) (c)

2024 AlI+TREBFIES | AR A& E i 8 E BT A

Q: Are these
horses?

Q: What color
is the purse?

Q: What coloris
the dog?

(d)




> 2 Heuristic-based | Answer

How to Configure Good In-Context Sequence for VQA: Analysis

Three important inner properties of LVLM during ICL
1. Limited TL capabilities

ACCo/o (C) 0FV2 - VQAVZ - RS
4 - e li— 54 65 ¢7% 67.94
52 T 52 25935 60 6220 61.92 ;’;
. 50 / \ 50 . 48.94
- ’ 55—
g 48 \/ —4—RS-\2 48
< 4 - SIR i 4537 45.645 |
“ o a4 - T T T
42 42 4 8 16 shot
40 20 _ - Standard (TR+TL) -e Mismatch (TR)
0 4 8 16 32 RS-V1 RS-V1-mismatch RS-V2 RS-V2-mismatch -®- New-mapping (TL) --- Random Answer
shot
® As the number of shots increases, ® Replacing incorrect answers in ® Disentangle TR and TL and
the improvement of the model demonstrations did not significantly find that the accuracy of TR is
diminishes impact the model's performance. significantly higher than TL
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> 2 Heuristic-based | Answer

How to Configure Good In-Context Sequence for VQA: Analysis

Three important inner properties of LVLM during ICL

2. The presence of a short-cut effect

. sa Copy rate(%) OFv1 OFv2
, RS 43.64 37.34

Q: What is the design on the sheets? Q: What is the design of the bed cover?
A: alligators and bears » A: alligators and bears S| 50.44 54.38

GT: zebra
SQ 77.26 79.84
sQ SQA 87.74 89.47
SQA(sole) 47.39 45.82
Q: What is the scientific name of this leaf? Q: What is the scientific name of this leaf?

A: tulip > A: tulip SQA(sole wrong) 37.07 45.71

GT: camellia

2024 AlI+TREBFIES | AR A& E i 8 E BT A




> 2 Heuristic-based | Answer
How to Configure Good In-Context Sequence for VQA: Analysis

Three important inner properties of LVLM during ICL

3. Partial compatibility between vision and language modules

(a) Experiment Setting (b) Experiment Result

Acc%
557
51.05 Sgg?
_lass2
Gaussian o) > —e-
Blur . 45— / 22 48.79
radius=15 e ‘/3‘2'7 =y
g
33.95
(a1) Blur the image -, - T
4 8 16 shot
Question: Question: RS -#- S| + Blur the imaqe
What color is the table? What is the? g
8- RS + Blur - RS + Remove
(a2) Remove information from text the image information from text

[ linguistic TR plays a more substantial role than visual TR ]

2024 AlI+TREBFIES | AR A& E i 8 E BT A




> 2 Heuristic-based | Answer
How to Configure Good In-Context Sequence for VQA: Analysis

Three important inner properties of LVLM during ICL

3. Partial compatibility between vision and language modules

Dataset 4-shot 8-shot 16-shot
RS(OFv1) VQAV?2 44 .56 47.38 48.71
instruct1(OFV1) VQAV?2 43.75 46.91 48.67
RS(OFv2) VQAV?2 48.82 51.05 50.89
instruct1(OFv2) VQAV?2 49.93 52.71 50.95
[ Some language reasoning ability lose efficacy in the VL case ]

2024 AlI+TREREFIEES | AR &5 i 205 4 BT 12




»

2 Heuristic-based |

How to Configure Good In-Context Sequence for VQA: Analysis

Effective Configuration Strategies

® Similar images and texts lead to better performance

® Similar images compensate visual information missed or incorrectly recognized

® Similar texts brings unstable improvements due to the presence of the short-cut

2024 Al+iR & &8 F

54
52
50
48
46
44
42
40

45
40
35
30
25
20

5155 5218 52.87

50.31
49.55
46.88

(a) OFv1 - VQAv2

40.79 40.47 40.30 39 57
36.99

3114

(d) OFv2 - VizWiz

mm RS

L | AIR N EF &6

70
65

60
55 52 47 53.13

48. 94
50
40

(b) OFv2 - VQAvV2

50.32 9171

42.43 2.1 43.25

41.28 41.35
] I I

(e) OFv1 - OK-VQA

S| mmSI-Q SQ mmSQ-|

HEHER

45
40

35 30.79
30
3
20
(c) OFv1 - VizWiz
55

50
45

40.31 39.78

38.41 39.01

34.23

39.92 40.48
40 3724 39.14 37.93 38.91

35
30 .
(f) OFv2 - OK-VQA

mmm SQPA(SI-4)

Answer




> 2 Heuristic-based | Answer

How to Configure Good In-Context Sequence for VQA: Analysis

Effective Configuration Strategies

® |nstruction enhances the performance of linguistically advanced model
® ncreasing information density in demonstrations
® do not yield significant improvements in inferior language encoder

Instructl: According to the previous question and Dataset 4-shot 8-shot 16-shot

answer pair, answer the final question.

Instruct2: Consider the semantic relationship RS VQAVZ 48.82 51.05 50.89

between the question and the image. instruct1 VOQAV?2 49.93 52.71 50.95

Instruct3: You will be engaged in a two-phase task.

Phase 1: Absorb the information from a series of RS OK-VQA 34.82 38.54 39.55
Image-text pairs. Phase 2: Use that context, instructl OK-VQA 35 72 39 38 40 46
combined with an upcoming image and your own

database of knowledge, to accurately answer a instruct? OK-VQA 36.45 40.17 41.11
subsequent question.

instruct3 OK-VQA 35.53 40.19 40.02

2024 AlI+TREREFIEES | AR &5 i 205 4 BT 12




> 2 Heuristic-based | Answer
How to Configure Good In-Context Sequence for VQA: Analysis

Effective Configuration Strategies

® Pseudo answers have potential for expeditious enhancement of performance

Dataset 4-shot

RS VQAV?2 48.82

--------------- SQPA(RS-4) VQAV?2 49.85

;'fl'fnd , 88 S8d | 28 5% @ S| VQAV?2 50.36
Retrive | SQPA(SI-4) VQAV?2 50.57

Second (=======- L ________ ' RS VizWiz 22.07
Round -__:E_EI____QEI___; ‘ 3 E] SQPA(RS-4) VizWiz 30.02
S| VizWiz 36.30

SQPA(SI-4) VizWiz 38.37

RS OK-VQA 34.82

SQPA(RS-4) OK-VQA 38.92

S| OK-VQA 36.46

SQPA(SI-4) OK-VQA 39.34

2024 AlI+TREREFIEES | AR &5 i 205 4 BT 12
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configuration strategies

“Take IC, and
VQA as examples” >




» 3 Learning-based

ICD-LM: Configuring Vision-Language In-Context
Demonstrations by Language Modeling

Yingzhe Peng, Xu Yang, Haoxuan Ma, Shuo Xu, Chi Zhang, Yucheng Han, Hanwang Zhang

arXiv: https://arxiv.org/abs/2312.10104
code: https://github.com/ForladeForest/ICD-LM
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» 3 Learning-based

ICD-LM: Traditional Configure ICD Methods

SR LVLM1 LVLM2

£ (i) Two steps to get better ICD configuration Performance Performance . Req u i re Se I e ct i n g a n d reo rd e ri n g
Re-Order IcD2  Icp1 Icp3  Icpa I C D se q uences.

Selector ICD1 ICD2 ICD3 icoa | i X X
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» 3 Learning-based

ICD-LM: Traditional Configure ICD Methods

® Different LVLMs have different
A im0 Conraton ' optimal ICD sequence.

icD2 | IeD5  ICD3  ICD6 X |

LVLM2 Optimal ICD Configuration

ICD2 ICD9 ICD7 ICD8 X
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> 3 Learning-based

ICD-LM: ICD Language Model

j_l_ﬂ_ﬂ_ﬁ Based on the following observation:
f w : Obtaining an optimal ICD sequence can
2o be likened to sentence generation in a
language model.

<

I
»
ICD1 ICDN

P
w
A

ICD Language Model Language Model

EDEDIEDIED (e ) (s | (“openea | [ |
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> 3 Learning-based

ICD-LM: ICD Language Model

sfsf;\fﬂlc Inference ICD2 ICD5 ICD3 ICD6 Query
ICD-LM Generation

&l (: EE - B .. ® One selects the most fluent word (ICD)
; from a vocabulary (ICD set) one by one.

evaluate : ) ICD Emb
ICD : SoftmaxLayer . .
quality EICD_LM o O O . USlng a Ianguage mOdEI eﬂab|eS
: TNy s e e —— learning to select and arrange optimal
Embedding Layer ! 2 s : ° N N [0.16, 0.32] E | C DS -

model specific ETraining .

?jaltazet f . BOS Query ICD 2 ICD 5 ICD 3 ICD 6 :

(b) Our ICD-LM
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| a; c/l:il
| Train set o
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ICD-LM: Dataset Construction
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a) Anchor set selection.

3 Learning-based

* Anchor sample simulate a query
sample during testing.

e Other train data samples will be
used as supporting set.




» 3 Learning-based

ICD-LM: Dataset Construction

—_—————————/

Q
Qr
Q
QR
~N
ISH
Qr
3

}
}
I
}
|
I
I 1
I
| | d2 2 |...[q2
I a2, [ d2, || d2,
1_| I
Random: . . .
| Select || ° :
I
:
\

b) Sub-Supporting set sampling.
* To reduce the time complexity.

S e e ------—--
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» 3 Learning-based
ICD-LM: Dataset Construction

© oo

i v

| 1 B an |
| | iy

| X SK‘ SK4 gk I
11 2, 1 |

| 1 B v

| | v

| |4y a; an | |
| Iy as : 1
1

JSorer 1 sty sk, - sk 1 |

| | : |

I Lo i C

| ! a : I

| ' [ a; an ! |
! 1

1

| v Sfs S SKs | |
| : 1

-

| ‘ » "

l J

K K
Im(S™,a) = Pu(ylS™, o) c) Use I to evaluate the ICD sequence.

=[[Pmu©18", @,y Y). : * Obtain the optimal ICD sequence using
t a greedy algorithm.

dr = argmax I ({d,S* '}, a) — Im (S, a)
dE'Ds
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» 3 Learning-based

ICD-LM: Training LM

H Inference ICD Configuration

We use CLIP to extract multimodal features

= (= ___ . ) I8 as the embedding of LM.
Transformer Decoder Blocks x2 : : :
The final Embedding is sum of:
BOS Query Icb1t ... ICDN EOS
a) Learnable Embedding: Randomly initialized
Learnable Embeddings BOS Emb Query Emb ICD1TEmb ... ICD N Emb EOS Emb
¥ + + b) Image Embedding
Image Embeddings Image Exnb ImaligeD;mb ------ Im;(;g Elmb
..... . ¢t +
Text Embeddings T;;J;:xb S oo C) Text Em beddlng
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» 3 Learning-based

ICD-LM: Experiments Setting

Compared Methods

1. Random Sample (RS)

2. Similarity-based Retrieval methods:
1. Similarity-based Image-Image Retrieval (SIIR)
2. Similarity-based Text-Text Retrieval (STTR)

3. Similarity-based Image-Text Retrieval (SITR)
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»
ICD-LM: Main Result

We construct 2-shot ICD configurations dataset
to train the ICD-LM.

® |[CD-LM achieve the best performance
compared with other methods.

® The trained ICD-LM excels in configuring
4-shot ICDs with strong length
extrapolation ability.

120
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20
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40
30
20
10

0
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3 Learning-based

Results of diverse ICL methods on IC

Avg:1~2 Avg:3~8 Avg:1~8
mRS ®=mSITR =mS|IR ®mICD-LM

Results of diverse ICL methods on VOQA

Avg:1~2 Avg:3~8 Avg:1~8
ERS ®=mS[TR ®mS|[R ®STTR m|CD-LM




> 3 Learning-based

ICD-LM: Ablation Result: Diverse configuration of dataset construction.

We select three factors for our ablation studies:
1. Beamsize b .
2. The number n of samples in anchor set.

3. The sampling method of sub-supporting set:
* Random: Selecting randomly from total supporting set.

* Similar Text (SIm-T): Selecting the highest textual similarity sample with anchor
sample a from total supporting set.

* Similar Image (Sim-1): Selecting the highest visual similarity sample with anchor
sample a from total supporting set.
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» 3 Learning-based

ICD-LM: Ablation Result: Diverse configuration of dataset construction.

[ 1. Beam size b . 128

80

® |ncreasing the beam size has a positive o0
. . 40
correlation with ICD-LM performance. 0

0

® An excessively large beam size can Avg:1~2 . _Q@Sfb:m Avg:1-~8
negatively impact performance.

] CIDEr of different Beam Size on IC

Accuracy of different Beam Size on VOQA

® The performance drop is due to lower- 52
scoring ICD sequences introduced with a 50
large beam size, misleading the ICD-LM 48
during training. 46

Avg:3~8
Ep=1 mp=5 mpb=10




» 3 Learning-based

ICD-LM: Ablation Result: Diverse configuration of dataset construction.

[ 2. The number n of samples in anchor set. ] . CIDEron IC
95
. . 90
® Using more anchor samples can improve g5
the interpolation performance in both IC 80 -
and VQA " Avg:1~2 Avg:3~8 Avg:1~8

mn =1000 mn=3000 mn =5000
® However, on |C, the extrapolation
performance decay when n changes from 54

3000 to 5000. i
48
46
44
42
40

Avg:1~2 Avg:3~8 Avg:1~8
En =1000 ®mn=3000 m=mn =5000

Accuracy on VOQA
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» 3 Learning-based
ICD-LM: Ablation Result: Diverse configuration of dataset construction.

CIDEr of different sample methods on IC
3. The sampling method of

sub-supporting set. 0

85

® \We find Random is the best in both IC and 80
VQOA. z

Avg:1~2 Avg:3~8 Avg:1~8
® \Ve suppose this is because selecting =Sim-l = 5im-T = Random
similar ICDs with the anchor sample
will damage the diversity of ICD

Accuracy of different sample methods on

VOA
seqguence. 54 Q
52
50
48
46
44
42
40
Avg:1~2 Avg:3~8 Avg:1~8
mSim-| Sim-T mRandom
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3 Learning-based

ICD-LM: Ablation Result: Diverse scorers structure

® Using task-specifical scorers will
increase the interpolation performance.

dr = argmax Im({d, 8" '}, a) — Im(S* 71, a)
dEDS

® Accuracy is not suitable for I,
B Binary Metric
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CIDEr of diverse scorers on IC

Avg:1~2 Avg:3~8 Avg:1~8
B RS mConfidence mCIDEr
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